
*

*
*
*

*

*

*

*
*
*
*
*

*
*

*
*
*
*
*

*

*

-w- -*-

TINY FORTH

PROGRAMMING LANGUAGE

FORTH is an exciting high-level programrning language. The FORTH

language Is very different looking from BASIC. But In many ways

it Is more powerful than BASIC.

FORTH has a base vocabulary of mlmple words. A word is executed

to perform a fundamental comput ing task. For ex amp 1e to add two

numbers and display the Bum using FORTH we would write:

104 73 ♦

These 'words' would add the numbers 106 and 73 together and

display the result on the screen. To conver t the decimal number

123 to hexadeci mal and display the results we would write:

123 HEX .

whlch Mould dlsplay the result 7A on thr screen.

ful ds byUsing FORTH we can create new and more pi

combining base words from the languags such as

: DASH 43 EMIT I

The HDrd DASH will display a *-' onto the display. This new. ward

In turn can be comb 1ned wlth others to create more complex words.

By defining the word DASHES «a follows -

: DASHES 0 DO DASH LOOP I

we can cause any number of '—' to appear on the display by typing

x DASHES where h is the number of dashes desired. Thus a single

new word can do the word of dozens of fundamental words. We call

FORTH an "extensible" language.

Write for our FREE CATALOG

MICROWARE

Suite 210,

5950 Cote des Neiges

Montreal, Quebec H3S 1 Z6

*
*

*
*
*
*

*
*

*

*
*

*

*

*

For the Commodore-64®or VIC-20'

PREFACE

Nick Vrtis is a well known author of numerous articles and

software that run on several popular 6502 micros. He's been

writing both for many years now. Several months ago I

casually mentioned to Nick that it would be nice to see

FORTH running on the VIC-20. He responded with this version,

which we call TINY FORTH. It's based on his SYM version

which has been running for over two years. This new version

runs not only on the VIC-20, but also on the COMMODORE 64.

TINY FORTH is based on the fig-FORTH release 1.1 for the

6502 dated September 1980. The original source listing and

installation manual can be obtained from the Forth Interest

Group, P.O. Box 1105, San Carlos, CA 94070. Nick has added

several features to TINY FORTH that are not in the fig-FOPTH

version.

The primary changes made to the fig-FORTH are:

1. elimination of double precision (32 bit) arithmetic;

2. addition of a full screen editor and several editing

words;

3. change the terminal buffer length to 88 from 84;

4. change the screen size to 40 character X 25 lines

for the COMMODORE 64 or 22 character X 23 lines for

the VIC-20;

5. elimination of the assembler.

TINY FORTH

fig-Forth implementation for the

Commodore 64 and VIC-20

(C) 1983 NICK VRTIS

Suite 210, 5950 Cdte des Neiges, Montreal, Quebec H3S1Z6

HQTE j
I;

This software is protected against '.

copying. It is not possible to write to I
the program disk. In order to save the ?

programs which you create with this 1
software, you must use a new or previously

initialized diskette. Below is a simple

method of initializing a new disk. ?

OPEN15,8,15 ,* N0:DISKNAME,00 *

It will take about 90 seconds, after]
which you may save your program to the
new disk.

If the disk becomes unreadable within

30 days, we will replace it free of charge.
After 30 days, we will replace it for a fee
of $4.00..

HMMNTY

KING MCRNME lakes no warranties, expressed or ioplied, at to
the fitness of this software package for a particular purpose.In
no event will KING NICRDHME be liable for consequential

teases. KING MICROHRRE Mill replace any copy of this software
rfuch, is unreadable if returned within 39 days of purchase.

Thereafter a noainal fee will be charged for replacennt.

PREFACE

Nick Vrtis is a well known author of numerous articles and

software that run on several popular 6502 micros. He's been

writing both for many years now. Several months ago I

casually mentioned to Nick that it would be nice to see

FORTH running on the VIC-20. He responded with this version,

which we call TINY FORTH. It's based on his SYM version

which has been running for over two years. This new version

runs not only on the VIC-20, but also on the COMMODORE 64.

TINY FORTH is based on the fig-FORTH release 1.1 for the

6502 dated September 1980. The original source listing and

installation manual can be obtained from the Forth Interest

Group, P.O. Box 1105, San Carlos, CA 94070. Nick has added

several features to TINY FORTH that are not in the fig-FOPTH

version.

The primary changes made to the fig-FORTH are:

1. elimination of double precision (32 bit) arithmetic;

2. addition of a full screen editor and several editing

words;

3. change the terminal buffer length to 88 from 84;

4. change the screen size to 40 character X 25 lines

for the COMMODORE 64 or 22 character X 23 lines for

the VIC-20;

5. elimination of the assembler.

BIBLIOGRAPHY

TABLE OP CONTENTS

INTRODUCTION 1

GETTING TINY FORTH SETUP. 2

SOME TINY FORTH "BASICS" 3

THE EDITOR 8

USEFUL FXAMPLES 11

DUPLICATE WORD DEFINITIONS 14

FILENAMES 15

GLOSSARY

NEW WORDS 16

STANDARD WORDS 19

SYSTEM INFORMATION

MEMORY MAP 41

SAVING A NEW VERSION OF TINY FORTH..43

ERROR MESSAGES 44

BIBLIOGRAPHY 45

Here are some references in which you will find more about

the FORTH language:

Ragsdale, William F., fig-FORTH INSTALLATION MANUAL, FORTH

INTEREST GROUP, San Carlos, CA, 1980.

Brodie, Leo, STARTING FORTH, Prentice-Hall, Englewood

Cliffs, 1981.

Knecht, Ken, INTRODUCTION TO FORTH, Howard W Sams & Co.,

Indianapolis, 1982.

Various, BYTE MAGAZINE, BYTE-MCGRAW HILL, August 1980 issue.

The contents of the GLOSSARY is taken in part from the

publications provided by the Forth Interest Group.

45

TINY FORTH

ERROR MESSAGES

ERROR NUMBER KEANING

0

1

2

4

5

9

17

18

19

20

21

22

24

WORD NOT FOUND

EMPTY STACK OR STACK OVERFLOW

DICTIONARY FULL

WARNING-NEW WORD IS NOT UNIQUE

REFERENCED SCREEN IS ALREADY IN

MEMORY AND SHOULD NOT BE

ILLEGAL CHARACTER IN NAME

COMPILATION ONLY, USER IN

DEFINITION

EXECUTION ONLY

CONDITIONALS NCT PARIFD

DEFINITION NOT FINISHED

IN PROTECTED DICTIONARY

USE ONLY WHFN LOADING

DECLARE VOCABULARY

I/O ERROR MEANING

0

1

2

3

4

5

6

7

8

9

I/O ROUTINF TERMINATED BY RUN/STOP
TOO MANY OPFN FILES

FILE ALREADY OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

FILE IS NOT INPUT FILE

FILE IS NOT OUTPUT FILE

FILE NAME IS MISSING

ILLEGAL DEVICE NUMBER

44

TINY FORTH

INTRODUCTION

FORTH is a high-level programming language. A program

written in FORTH does not look at all like its equivalent
written in BASIC. Nonetheless, FORTH is as equally capable
as BASIC in problem solving.

In some respects FORTH is superior to BASIC. For instance,

FOPTH programs typically execute faster than BASIC programs.

FORTH programs are usually shorter than BASIC programs.

FORTH is "extensible" - you can add new words to the

language. On the other hand, most people initially find that
FOPTH programs are cryptic compared to BASIC.

TINY FOPTH is a version of FORTH for the COMMODORF 64 and

VIC-20 microcomputers. It contains most of the language

elements found in the fig-FOPTH standard (most widely used
version). TINY FORTH runs on a standard COMMODORE 64 or a

VIC-20 with a minimum of an 8K memory expander.

This manual will show you how to get TINY FORTH up and

running on your micro. It introduces you to the language

elements that are included in TINY FORTH. However, it is not

a tutorial on FORTH programming. For that, we recommend one

of the references listed in the BIBLIOGRAPHY. Still we'll

show you enough examples so that you are able to see how
TINY FORTH works.

Cur advice to you is to sit down with TINY FORTH and

experiment with the words in the GLOSSARY. Mot only will you

find TINY FORTH a powerful language, but it is a fun one
too. So have fun!

TINY FORTH

GETTING TINY FORTH SETUP

The distribution tape or diskette contains one the
following:

CONTENTS

TINY FORTH for the VIC-20

TINY FORTH for the COMMODORE 64

Follow these directions to run TINY FORTH.

1.

2a

If using a VIC-20 version, make sure that you
have an 8K memory expander installed. If not,
turn off the computer, plug in the memory
expander and then turn on the computer.

If using a tape version of TINY FORTH, insert the
distribution tape into the cassette drive. Pake
sure that the tape is completely rewound.

or

b. If using a disk version of TINY FORTH, carefully
insert the distribution diskette into the disk
drive and close the drive door.

3a. If using a tape version type:

LOAD "TF-20-,1,1 or LOAD "TF-64-,1,1 and press
the RETURN key. Be sure to type ,1,1.

Press PLAY on the cassette recorder when asked to
do so by the computer. With a COMMODORE 64, when

the message FOUND -TF-64- appears on the screen,
press the C= key to continue loading.

or

b. If using a disk version type:

LOAD "TF-20-,8,1 or LOAD "TF-64-,8,1 and press
the RFTURN key. Be sure to type ,8,1.

4. After TINY FORTH is loaded, the READY, prompt
reappears on the screen. At this time, type PON

and press the RETURN key. A TINY FORTH signon
message appears on the screen and a flashing

cursor indicates that TINY FORTH is ready to
accept your commands.

5. Now turn the the section called SOME TINY FORTH
BASICS.

6. If you have to warm start TINY FORTH, you can
type SYS6225 for a Commodore 64 or SYS8785 for a
VIC-20.

TINY FORTH

SAVING A NEW VERSION OF TINY FORTH

You will probably extend your TINY FORTH vocabulary as you

become more and more familiar with the language. Eventually
you will want to create a new version of TINY FORTH which
includes your personally customized words. To save a copy of
Tiro FORTH with new words and changes use the word NEWFORTH.
NEWFORTH saves a new version of TINY FORTH to tape or disk

with the name NEW.TF-20 or NEW.TF-64. The following are the
definitions for NEWFORTH.

For the COMMODORE 64

20 $STRING NTF-64

20 $ STRING TFDUMMY

NTF-64 $" NEW.TF-64"

(THESE DEFINITIONS HAVE)

(ALREADY BEEN SET UP)

(IN TINY FORTH)

(SAVE ORIGINAL FILENAME)

(NAME OF NEW FILENAME)

NEWFORTH

TFDUMMY SNP $!

SNP NTF-64 $!

HEX LATEST 08AD !

HERE 08B5 !

VOC-LINK 8 08B7 !

HERE 0800 SNP COUNT BLOCK-WRITE « WRITE NEW FILE)
SNP TFDUMMY $! ; f RESTORE ORIGNAL FILENAME)

For the VIC-20:

20 $STRING NTF-20

20 $STPING TFDUMMY

NTF-20 $w NEW.TF-20"

(THESE DEFINITION HAVE)

(ALREADY BEEN SET UP)

(IN TINY FORTH)

(SAVE ORIGINAL FILENAME)

(NAME OF NEW FILENAME)

NEWFORTH

TFDUMMY SNP $!

SNP NTF-20 $!

HEX LATEST 12AD !

HERE 12B5 !

VOC-LINK § 12B7 !

HERE 1200 SNP COUNT BLOCK-WRITE i WRITE NEW FILE)
SNP TFDUMMY $! ; (RESTORE ORIGNAL FILENAME)

43

TINY FORTH

0F3A 193A

0F45

0F50

0F5C

1945

1950

195C

FIRST: ADDRESS OF START OF

BUFFFR MEMORY ($8844 FOR C-64;

$3BC8 FOR VIC-20)

ROWS: NUMBER OF ROWS ON A

SCREEN ($0019 FOR C-64; $0017
FOR VIC-20)

COLS: NUMBER OF COLUMNS ON A

SCREEN LINE ($0028 FOR C-64;

$0016 FOR VIC-20)

B/BUF: BUFFER DATA LENGTH

($03E8 FOR C-64; $0lFA FOP

VIC-20)

DEVICE NUMBER FOR SCREENSAVES
AND LOADS ($01)

START CF AVAILABLE DICTIONARY
MEMORY

BUFFER AREA

START CF 64 BYTE USER VARIABLE

AREA (FIPST 44 BYTES ARE USED

BY TINY FORTH)

The location and length of the USER AREA, screen buffers,
and terminal buffer can be changed by changing the
appropriate pointers as noted above. To allocate an extra
buffer, use the following:

FIRST B/BUF 2+ - • FIRST I FIRST ■ LM ! EMPTY-BUFFERS

Note that the change will be temporary unless you save a new

copy of TINY FORTH. Be sureto enter the single quotes
(called TIC) where shown.

1E38

210B

8844-9FBF

9FC0

2838

2B0B

3BC8-3FBF

3FC0

42

TINY FORTH

SOME TINY FORTH BASICS

WORDS and the DICTIONARY

We talk to TINY FORTH using WORDS. All of TINY FORTH's

words are stored in the DICTIONARY. TINY FORTH comes with a

vocabulary of more than 175 words. You can also add new

words to the dictionary, thereby extending your TINY FORTH

language. We'll show you how to do this later.

A word consists of a character or several characters.

However do not use any of the COMMODORE 64 or VIC-20 graphic

characters for the name of a word. Some TINY FORTH words

consist of special characters such as +, -, * or / which are

similar to arithmetic operators of the BASIC language. A

word is "executed" when the RETURN key (<RFTURN>) is
pressed.

STACK

The STACK is a place where TINY FORTH temporarily stores

information. A TINY FORTH word usually expects the STACK to

contain a certain number of values when they are executed.
The word may also leave a value on the STACK as a result of

its execution.

Values are placed on the STACK one at a time. The value that

most recently placed on the STACK is called the top of the

stack (TOS). If no values are left on the STACK, then it is
said to be empty.

NUMBERS

TINY FORTH has many words that work with numbers. The

numbers must be integers (whole numbers). They range in

value from -32768 to +32767.

SPACES and the RETURN KEY

Unlike BASIC, the SPACE is a significant part of the TINY
FORTH language. Unless a word is "separated by a SPACF, TINY
FORTH is not able to find the word in the dictionary.

The RETURN key (<RETURN>) tells TINY FORTH that you are

ready to execute the word(s) that you have typed in. This
lets you group together several words on a line (or even on

multiple lines) and then execute them by pressing <RETURN>.

The words are then executed in the order in which they were
entered•

TINY FORTH

To introduce you to the language, here some examples:

A FIRST EXAMPLE

TINY FORTH considers numbers to be words. Whenever TINY
FORTH encounters a number, it places that value on the

stack. Remember that individual numbers are separated by
spaces.

Let's begin by typing in the following words:

2 4 6 8 10 <RETURN>

Remember to leave a space between each number. After you

press <RETURN>, TINY FORTH responds by printing OK meaning

that it has placed the four number on the stack in the same
order as you typed them in. First the number 2 is pushed
onto the stack, making it the top of the stack (TOS). Next

the number 4 is placed on the stack, pushing 2 down and
leaving 4 at the TOS, etc. Finally after all of the words

(numbers in this case) are executed, the stack looks like
this:

TCS (top of stack) >

bottom of stack-

10

8

6

4

2

Now type the word . (a period, but commonly pronounced

"dot") and press the RETURN key. TINY FORTH prints:

10

OK

The word . means print the value at the top of the stack and

remove it from the stack. The stack therefore looks like
this:

TOS (top of stack) >

Bottom of stack-

The value that was previously at the TOS (8) is gone. Now
type the following:

. . . • <RETORN>

TINY'FORTH will print:

8 6 4 2

OK

You told TINY FORTH to print the three values at the top of

TINY FORTH

MEMORY MAP

(all addresses are hexadecimal)

COMMODORE 64

004F-0051 *

0057-005E

0OFB-00FC

0800

080D

VIC-20

004F-0051

0057-005E

00FB-00FC

1200

120D

DESCRIPTION

080E-08AB

08AD

08AF

08B3

120E-12AB

12AD

12AF

12B3

08B5

08B7

0B2A

0B3B

12B5

12B7

152A

153B

0B57

0B7A

0F19

0F22

0F2E

1557

157A

1919

1299

192E

CODE FIELD POINTER

FORTH WORK AREA

NEXT FORTH WORD POINTER

BASIC STATEMENT WHICH IS THE SYS

TO THE START OF TINY FORTH

FORTH STACK INDEX SAVEAREA. FOR

MACHINE, THIS WILL POINT TO THE

TOP OF THE FORTH STACK RELATIVE
TO $080E

FORTH DATA STACK

INITIAL ADDRESS CF THE NAME FIELD
OF THE LAST FORTH WORD ($20ED

FOR C-64;$2AED FOR VIC-20)

POINTER TO TFRNINAL INPUT BUFFER

($0200)

INITIAL FORGET FENCE (CAN'T FORGET

WORDS BELCW THIS ($210B FOR C-64;
$2B0B FOR VIC-20)

INITIAL ADDRESS OF START OF

AVAILABLE MEMORY ($210B FOR C-64;
$2B0B FOR VIC-20)

INITIAL VOCABULARY LINK POINTER

(S178CFOR C-64;$2A8C FOR VIC-20)
JSR CHROOT AS PART OF EMIT

JSR GETIN AS PART OF KEY. NOTE

THAT KEY USES THF GET ROUTINES,

BUT WAITS FOR A CHARACTER TO BE

ENTERED FROM THF KEYBOARD. THE

CURSOR IS NOT ON AT THIS TIME,

NOR IS THE CHARACTER FCHOED TO

THF SCREEN. USE HEX EAEA 0B3F !,

FOR C-64 OR HEX EAEA 15EF ! FOR

THE VIC-20 TO CAUSE KEY TO LEAVE

A ZERO ON THE STACK IF NO KEY IS

DOWN. USE HEX FAFO 0B3F ! FOR THF
C-64 OR HEX FAFO 15EF ! TO

RESTORE THE DEFAULT CONDITION.

JSR STOP AS PART OF 7TERMINAL

JSR CHROOT AS PART OF CR

LM: TCP OF AVAILABLE DICTIONARY

MEMORY ($8844 FOR C-64; $3BC8

FOR VIC-20)

UA: ADDRESS CF64-BYTEUSER
VARIABLE APEA ($9FC0 FOP C-64;
$3FC0 FOR VIC-20)

LIMIT: LIMIT OF MEMORY FOR

BUFFERS ($9FC0 FOR C-64; $3FC0
FOR VIC-20)

41

TINY FORTH

WORD c

Red the next text characters from the input stream
being interpreted, until a delimiter c is found,
storing the packed character string beginning at
the dictionary buffer HERE. WORD leaves the
character count in the first byte, the characters,

and the ends with two or more blanks. Leading
occurrances of c are ignored. If BLK is zero, text

is taken from the terminal input buffer, otherwise
from the tape or disk block stored in BLK. See BLK,
IN.

XOP

This is a pseudonym for the "null" of dictionary
entry for a name of one character of ascii null. It

is the exectuion procedure to terminate
interpretation of a line of text from the terminal
or within a tape or disk buffer, as both buffers
always have a null at the end.

nl n2 xor

Leave the bitwise logical exclusive-or of two
values.

Used in a colon-definition in form:
: xxx [words] more ;

Suspend compilation. The words after [are
executed, not compiled. This allows calculation or

compilation exceptions before resuming compilation
with]. See LITERAL.

[COMPILE]

Used in a colon-definition in form:
: xxx [COMPILE] FORTH ;

[COMPILE] will force the compilationof an immediate
definition, that would otherwise execute during
compilation. The above example will select the

FORTH vacabulary when xxx executes, rather than at
compile time.

Resume compilation, to the completion of a colon-
definition. See [.

40

TINY FORTH

the stack in succession. As each value at the TOS is
printed, it is removed from the stack, leaving a new TOS
value.

Now type • once more and <RETURN> and TINY FORTH prints:

0 MSG # 1

This means that the stack is empty since there are no
further values on the stack. TINY FORTH keeps track of

the bottom of the stack amd tells you if you are "bottoming
out .

A SECOND EXAMPLE

The first example placed values on the stack and then
removed them from the stack. The next example works a
little differently.

Type:

25 3 <RETURN>. Don't forget to leave a space between the
25 and 3. The stack now looks like this:

TOS

BCS

3

25

Now type the word * <RETURN>. The word * tells TINY FORTH to

multiply the value at the TOS by the value just underneath
the TOS, remove both values and finally place the product at
the TCS. After executing the word *, TINY FORTH places the
value 75 at the TOS. To verify this, type . <RETURN> to
print the TOS value.

In TINY FORTH, we describe the action of a word by showing

the parameters on the stack before the execution of the word
and the resulting values on the stack after the execution of
a word.

For the multiply word * here is its description:

* nl n2 prod

The values nl and n2 are the multiplier and multiplicand.
The indicates the execution point of the word *.

Finally, prod is the resulting product which replaces both
nl and n2 on the stack.

The GLOSSARY in this manual is written using this
description format.

TINY FORTH

A THIRD EXAMPLE

In the first example, the v/ord . printed to the TCS value.

However in doing so, it also removed it from the stack.

If we want to print the TOS without destroyint it, then we

must first make a copy of the TOS. You can do this with the

TINY FORTH v/ord DOP.

For example the words:

5 DOP <RETURN>

would give a stack like this:

TOS—

BOS—

Printing using the . word, removes only the first value 5,

leaving the second 5 at the TCS.

As previously mentioned, TINY FORTH comes with a dictionary

filled with useful words. They are described in the glossary

section of this manual. But you may also add your own words

to TINY FORTH. To add words to TINY FORTH, you have to

COMPILE them.

You tell TINY FORTH that you are creating a new word by

using a s (colon). The s means that the name following the

colon is the name of a new word. Any words following the

name is part of the definition of that new word. Finally a ;

(semicolon) tells TINY FORTH that the defintion is complete.

Using elements from the previous examples, you can create a

new word called SQR (which prints the square of the number

at the TOS). The new word and definition is compiled by

typing:

s SQR DOP *

CK

<RETURN>

Notice that after typing the above line that TINY FORTH

responds by printing CK. When TINY FOPTH is compiling (colon

definition), the new word is not executed. The colon means

that you are creating a new v/ord, not executing it.

A closer look at the line:

SQR

DOP
*

beginning of definition (compile)

name of the new word (you could call it

anything you wanted)

duplicate the value at the TOS

multiply the two values at the TOS leaving

the product in their place

TINY FORTH

VOCABULARY

A defining word used in the form:

VOCABULARY cccc

to create a vocabulary definition cccc. Subsdequent

use of cccc will make it the CONTEXT vocabulary

which is searched first by INTERPRET. The sequence

"cccc DEFINITIONS" will also make cccc the CURRENT

vocabulary into v/hich new definitions are placed.

In TINY FORTH, cccc will be so chained as to

include all definitions of the vocabulary in which

cccc is itself defined. All vocabularies ultimately

chain to FORTH. By convention vocabulary names are

to be declared IMMEDIATE. See VOC-LINK.

VLIST

WARNING

WHILE

WIDTH

List the names of the definitions in the context

vocabulary. The RUN/STOP key will terminate the

listing.

addr

A user variable containing a value controlling

messages.

f (runtime)

addrl nl —- addrl nl addr2 n2

Occurs in a colon-definition in the form:

BEGIN ... WHILE (tp) ... REPEAT

At runtime, WHILE selects conditional execution

based on boolean flag f. If f is true (non-zero),

WHILE continues execution of the true part thru to

REPEAT, which then branches back to BEGIN. If f is

false (zero), execution skips to just after REPEAT,

exiting the structure.

At compile time, WHILE emplaces (OBRANCH) and

leaves addr2 of the reserved offset. The stack

values will be resolved by repeat.

addr

A user variable containing the maximum number of

letters saved in the compilation of a definition's

name. It must be 1 thru 31, with a default value of

31. The name, character count and its natural

characters are saved, up the the value in WIDTH.

The value may be changed at any time v/ithin the

above limits.

39

UNTIL

USE

UPDATE

USER

f (runtime)
addr f (compile)

Occurs within a colon-definition in the form:
BEGIN ... UNTIL

At runtime, UNTIL controls the conditional branch
back to the corresponding BEGIN. If f is false,

execution returns to just after BEGIN; If true,
execution continues ahead.

At compile-time, UNTIL compiles (OBRANCH) and an
offset from HERE to addr. n is used for error
tests.

addr

A user variable containing the address of the

buffer to use next as the least recently used.
Updated by BUFFER.

Write the most recently referenced block (pointed
to by PREV) to tape or disk.

A defining word used in the form:
n USER cccc

which creates a user variable cccc. The parameter
field of cccc contains n as a fixed offset relative

to the user pointer register UP for this user
variable. When cccc is later executed, it places

the sum of its offset and the user area base
address on the stack as the storage address of that
particular variable.

VARIABLE

A defining wword used in the form:
n VARIABLE cccc

When VARIABLE is executed, it creates the

definition cccc with its parameter field

initialized to n. When cccc is later executed, the
address of its parameter field (containing n) is
left on the stack, so that a fetch or store may
access this location.

VCC-LINK addr

A user variable containing the address of a field
in the definition of the most recently created
vocabulary. All vocabulary names are linked by

these fields to allow control for FOPGETting thru
multiple vocabularies.

38

TINY FORTH

print the value at the TOS

; end of definition (compile)

The name of the new word is arbitrary. You can call it

SQUARE, SQRF or SQUARED. You can even use the name of a
previously defined word. In this case, you will see a

warning message MSG # 4 meaning that the new word is not
unique. The most recent definition of the word is always
executed. So if you redefine SQR at a later time, this last

definition is executed when you type in SQR.

To try out the new word, type:

6 SQR <RETURN>

TINY FORTH responds by printing:

36

OK

The glossary description for the new word is:

SQR nl

The value nl is the number that you want to square. SQR

expects this number to be at the TOS before it is executed.

No value is left on the stack after SQR is executed, so no
values are shown the the right of the (execution point).

This concludes the "basics" section of TINY FORTH. For more
information on other TINY FORTH words, consult the GLOSSARY
or one of the references listed in the BIBLIOGRAPHY.

The next section describes the full screen editor. The

EDITOR allows you to create SCREENS which can be saved to
disk or tape. A screen may contain new definitions or just
plain text. The screen may later be LOADed (compiled from
disk or tape) or LISTed (displayed on screen).

TINY FORTH

THE EDITOR

The TINY FORTH editor works with a full screen at a time. To
start out, type:

EMPTY-BUFFERS <RETURN>

which clears out the areas of memory (called BUFFERS) used
by the editor. Now to edit a screen, type:

1 :I <RETURN> (no space between the : and I) .

This tells TINY FORTH that you want to input data onto

SCREEN number 1 (or another screen number). The cursor is

positioned at the upper left hand corner of the screen and
waits for you to input your data. You should first hold the
shift key and press the CLR key in order to erase the screen
of any data left on the screen.

With the editor, you can move the cursor anywhere on the

screen using the cursor control keys. After the cursor is
positioned where you want it, you can key in your data. The

insert and delete keys work normally. Unlike the BASIC
editor, the TINY FORTH editor works with a full screen at a
time. What you see (on the screen) is what you get (in the
BUFFER). It is not necessary to <RETURN> over each line to
make changes.

After £11 of your changes are made to the screen, you may

update the BUFFER or cancel the changes.

To update the BUFFER enter a SHIFTed <RETUPN> (hold the

SHIFT key while pressing the RETURN key). The contents of

the screen are saved in the associated BUFFFR, exactly as it
appears on the screen.

To leave the editor without updating the BUFFER, press the
RUN/STOP key instead. The contents of the BUFFFR is left
unchanged.

Commands and definitions keyed onto a screen using the

editor are not immediately executed. If after editing a

screen you want to execute the contents, type 1 LOAD and

TINY FORTH will execute the commands contained in screen

buffer # 1 (of whatever screen number you were editing). Any
colon definition contained in the screen buffer are compiled
and if no errors are found they are entered into the
dictionary. If errors are found, you can go back to re-edit
the screen buffer.

To re-edit the screen, type 1 :E <RETURN>. You may use the
cursor control keys to position the cursor for making

changes to the screen contents. Again, to save the contents
of the screen to the BUFFER, press a SHIFTed <RETURN>, or

TINY FORTH

SPACE

SPACES

STATF

SWAP

TASK

THFN

TIB

Transmit an ascii blank to the output device.

n —

Transmit n ascii blanks to the output device.

addr

A user variable containing the compilation state. A
non-zero value indicates compilation.

nl n2 n2 nl

Exchange the top two values on the stack.

A no-operation word which can mark the boundary
between applications. By forgetting TASK and re
compiling, an application can be discarded in its
entirety.

An alias for ENDIF.

addr

A user variable containing the address of the
terminal input buffer.

TOGGLE addr b

Complement the contents of addr by the bit pattern
b.

TRAVERSE addrl n addr2

Move across the name field of a variable length
name field, addrl is the address of either the

length byte or the last letter. If n=l, the motion
is toward hi memory; if n=-l, the motion is toward
low memory. The addr2 resulting is the address of
the other end of the name.

TYPE addr count

Transmit count characters from addr to the selected
output device.

U* ul u2 ud

Leave the unsigned double number product of two
unsigned numbers.

U/ ud ul u2 u3

Leave the unsigned remainder u2 and unsigned quo
tient u3 from the unsigned double dividend and
unsigned divisor dl.

37

TINY FORTH

R>

RO

RFPEAT

ROT

RP!

SO

SCR

SIGN

S PUDGE

SP!

SP@

Remove the top value from the return stack and

leave it on the computation stack. See >R and R.

addr

A user variable containing the initial location of

the return stack. Pronounced R-zero. See RP!

addr n (compiling)

Used within a colon-definition in the form:

BEGIN . .. WHILE ... REPEAT

At runtime, REPEAT forces an unconditional branch

back to just after the corresponding BEGIN.

At compile time, REPEAT compiles BRANCH and the

offset from HERE to addr. n is used for error

testing.

nl n2 n3 n2 n3 nl

Rotate the top three values on the stack, bringing

the third to the TOS.

Initialize the return stack pointer from user

variable RO.

addr

A user variable containing the initial value for

the stack pointer. Pronounced S-zero. See SP!

addr

A user variable containing the screen number most

recently referenced by LIST.

nl n2 n2

Stores an ascii "-" sign just before a converted

numeric output string in the text output buffer

when n is negative, n is discarded, but number n2

is maintained. Must be used between <# and #>.

Used during word definition to toggle the "smudge

bit" in a definitions1 name field. This prevents an

uncompleted definition from being found during

dictionary searches, until compiling is completed

without error.

Initialize the stack pointer from SO.

addr

A procedure to return the address of the stack

position to the top of the stack, as it was before

SP@ v/as executed.

36

TINY FORTH

cancel these changes by pressing RUN/STOP.

After editing you will want to save the contents of the

screen to disk or tape. To do this type:

1 PUT <RETURN>

The contents of the buffer (in this case buffer # 1) is

saved to the disk or tape with the name "SCREENl".

After you become familiar with TINY FORTH, you will create

many new words. Each time you use TINY FORTH, you must

define these new words in the dictionary by typing them in

(using colon definitions). An alternate way of doing this

is to use the editor to create the source text for these

words, and then save them to disk or tape (using PUT).

Later, these screens are LOADed from the disk or tape

thereby eliminating the need to retype them in. For example,

to automatically compile any words on "SCREENl", you can
type:

1 LOAD <RETURN>

TINY FORTH searches the buffers to find "SCREENl". If

"SCREENl" is not in memory, TINY FORTH searches the tape or

disk for "SCREENl11 and when it finds it, reads the contents

and executes the commands contained.

Below are the other editing words available in TINY FOPTH.

Try them out, since trying is the best way to learn to use

TINY FORTH.

: E n --—

Full screen edit of screen # n. This word uses

BLOCK to locate the requested screen, so it is read

from tape or disk if necessary. Normal cursor

editing is used. The TINY FORTH screen data is

copied to the screen for editing. Note that the

screen editor allows lines to wrap, but TINY FORTH

treats the whole screen as one "line", and does not

retain information concerning how lines are

wrapped. Pressing the RUN/STOP key terminates

editing without making any changes to the buffer.

Pressing a shifted RETURN (hold SHIFT key while

pressing <RETURN> key) exits the editor and saves

the entire screen contents in the buffer.

n

Input from tape or disk to buffer as screen # n.

Screen n must not already be in memory or error 5

results. Editing is the same as for :E. Note that

the screen is not cleared at the start of :I, so

any information on the screen is copied to the

buffer unless you clear it.

TINY FORTH

:L addr n

Lists n screen lines from the buffer at addr. If
the output device is other than the screen, a

carriage return is output at the end of each screen
line.

:M faddr taddr

Move a buffer from faddr to taddr. The length of
the move is defined by B/BUF.

:C bfaddr n addr

Compute the offset of line n relative to bfaddr.

NOTES ON USING THE EDITOR

Unlike the BASIC editor, TINY FORTH works with a full screen

at a time. When you are using :E or :I and enter a SHIFTed
<RETURN> key, the entire screen contents are saved exactly

as you see them. It is not necessary to <RETURN> over each
line to update the buffer.

Using a tape version of TINY FORTH, it is possible to

•update1 a tape if you are careful, since the screens are

always the same length. The technique is to make sure the

screen you want to update is in a buffer and update it (use
the n :E. command). Then use the following: SCR @ 1 - GET.

You have to rewind the tape and then TINY FORTH reads in the

screen just before the one you want to update. Pake sure the
tape is STCPped and enter SCR @ PUT. Make.sure you press
PLAY and RECORD when asked. Make sure that you reference the
screen you want to save before the GET (v"ia a »n :Ef or 'n

BLOCK DROP1) or GET may overlay the buffer you want to save.

THE SCREEN BUFFERS

As delivered the VIC-20 version of TINY FORTH has two
buffers, while the COMMCDORF 64 version has six buffers.

Each buffer has a length equal to the length of a screen
plus 2 bytes. These two bytes are used to hold the TINY

FORTH screen number currently in that buffer. The number of
buffers can be increased, but they must be contiguous, and

each must be B/BUF + 2 bytes in length. NOTE that BLOCK-READ
and BLOCK-WRITE do not use these buffers for their I/O.

BLOCK-READ and BLOCK-WRITE are basically interfaces to the
kernal read and write routines, and can be used to
read/write any memory.

10

TINY FORTH

CFFSFT

OR

CUT

OVER

PAD

PFA

PREV

QUERY

QUIT

addr

A user variable which may contain a block offset to
the disk buffer. The contents of OFFSET is added to
the stack number by BLOCK.

nl n2 -— or

Leave the bitwise logical or of two 16-bit values.

addr

A user variable that contains a value incremented
by EMIT. The user may alter and examine OUT to
control display formatting.

nl n2 nl n2 nl

Copy the second stack value, placing it as the new
TOS.

addr

Leave the address of the text output buffer, which
is a fixed offset above HERE.

nfa pfa

Convert the name field address of a compiled
definition to its parameter field address.

addr

A user variable containing the address of the
buffer most recently referenced. Updated by BUFFER.

Input 88 characters or text (or until a <RETURN>
from the terminal. Text is positioned at the
address contained in TIB with IN set to zero.

Clear the return stack, stop compilation, and
return control to the operators terminal. No
message is given.

P#

Copy the top of the return stack to the computation
stack.

addr

A user variable which may contain the location of
an editing cursor, or other file related function.

addr blk f

The TINY FORTH standard tape or disk read-write
linkage, addr specified the source or destination
block buffer, blk is the sequential number of the
referenced block; and f is a flat for f=0 write and
f=l read. R/w determines the location on mass
storage, performs the read-write and performs any
error checking.

35

TINY FORTH

LCCP

max

MFSSAGE

MIN

MINUS

MOD

MCN

MOVE

NFA

NOP

NUMBER

addr n (compiling)

Occurs in a colon-definition in form:

DO ... LOOP

At runtime, LOOP selectively controls branching
back to the corresponding DO based on the loop

index and limit. The loop index is incremented by
one and compared to the limit. The branch back to

DO occurs until the index equals or exceeds the

limit; at that time, the parameters are discarded

and executioncontinues ahead.

At compile time, LOOP compiles (LOOP) and uses addr

to calculate an offset to DO. n is used for error

testing.

nl n2 max

Leave the greater of nl and n2.

Print on the selected output device the text "MSG

#" and the value of n according to the current

BASE.

nl n2 min

Leave the smaller of two numbers.

nl — n2

Leave the two's complement of a number.

nl n2 mod

Leave the remainder of nl/n2, with the same sign as

nl.

Execution of 6502 BRK instruction.

addrl addr2 n

Move the contents of n memory cells (16 bit

contents) beginning at addrl into n cells beginning

at addr2. The contents of addrl is moved first.

pfa — nfa

Convert the parameter field address of a definition

to its name field.

A word which does nothing.

addr n

Convert a character string left at addr with a

preceeding count to a signed number nf using the

current BASE. If numeric conversion is not

possible, an error message is given.

34

TINY FORTH

USEFUL EXAMPLES

To repeat, the easiest way to learn TINY FORTH is the try

examples. Included below are several examples that explain

some of the more useful words that will help you get the

most from your TINY FORTH. Note that comments begin with (

and end with).

To change a tape version of TINY FORTH to a disk version,

define a word called DISK as follows:

COMMODORE 64 : DISK BASE C§ HEX 8 1E38 C! BASE C! ;

VIC-20 : DISK BASE C@ HEX 8 2838 C! BASE C! ;

Here's the play by play description™

DISK

BASE C@

HEX

8 1E38 C!

or

8 2838 C!

BASE Cl

beginning of definition)

name of v/ord)

leave current base on the stack)

change base to hexadecimal)

change device or LOADing, PUTting,

GETting, etc. to device 8)

restore base to original)

To change a disk version of TINY FORTH to a tape version,

define a word called TAPE as follows:

COMMODORE 64 : TAPE BASE C@ HEX 1 1E38 C! BASE C! ;

VIC-20 : TAPE BASE C£ HEX 1 2838 C! BASE C! ;

This word is similar to the word DISK above except that the

device is 1 (tape device).

If you have a printer and want to get a hard copy of a

screen you can define a word to do this.

: PLIST

PRT 0 0 OPEN

PRT SETOUT

LIST

(printer version of list)

(PRT variable for printer

with device 4

0 no name

0 length of name

OPEN opens logical file)

(set current output device

tp variable PRT)

(perform normal LIST, but

to device 4)

11

TINY FORTH

0 SETOUT

PRT CLOSE ;

(reset current output device

to screen)

(close printer logical file)

Using PLIST, you can get a hard copy of any TINY FORTH
screen(s). For example, if you have been editing screen

number 2, you can get a hardcopy of it by typing:

2 2 PLIST <RETURN>

If you want to try a little animation then first define a

word called DELAY.

: DELAY 0 DO 1 DROP LOOP y

Next define a word called BIRD.

BIRD

.• v"

BEGIN

500 DELAY

500 DELAY

ill!"

?TERMINAL

UNTIL

CR ;

(clear screen)

(draw bird)

(wait a while)

(draw bird again)

(wait some more)

(erase bird)

(check for RUN/STOP key)

(repeat if not RUN/STOP)

Now type BIRD <RETURN> and watch some animation.

Here's how to make some noise with your computer. Using the
word DELAY from the above example, you can define another
word called UFO.

For the VIC-20:

: UFO

15 36878 Cl

254 130 DO

I 36876 C!

80 DELAY

LOOP

0 36878 C!

0 36876 C! ;

(set volume to 15)

(vary the frequency from

130 to 254)

(frequency to VIC chip)

(wait a while)

(go back again)

(turn off volume)

(turn off VIC chip)

12

TINY FORTH

LEAVE

LFA

LIMIT

LIST

LIT

LITERAL

LOAD

LCC-BLK

Force termination of a DO-LOOP at the next opportu
nity by setting the loop limit equal to the current
value of the index. The index itself remains
unchanged, and execution proceeds normally until
LOOP or +LOOP is encountered.

1 pfa Ifa

Convert the parameter field address of a dictionary
definition to its link field address.

addr

A constant leaving the address just above the
highest memory available for a buffer.

nl n2

Display the ascii text of screens n2 thru nl on the
selected output device. SCR contains the screen
number during and after this process. Screens are
read from tape or disk if not in memory.

Within a colon-definitionf LIT is automatically
compiled before each 16 bit literal number

encountered in input text. Later execution of LIT

causes the contents of the next dictionary address
to be pushed to the stack,

n (compiling)

If compiling, then compile the stack value n as a
16 bit literal. This definition is immediate so
that it will execute during a colon definition. The
intended use is:

: xxx (calculate) LITERAL ;

Compilation is suspended for the compile time cal
culation of a value. Compilation is resumed and
LITERAL compiles this value.

n

Begin interpretation of screen n. Loading will
terminate at the end of the screen or at the ;S.
See ;S or —>.

n f

Locate block number n in memory only. PREV is
updated to point to block if found, else it is
unchanged, f is true if block is found, f is false
if the block is not currently in the buffer.

33

TINY FORTH

IF f (runtime)
addr ' n (compile)

Occurs in a colon-definition in form:
IF (tp) ... ENDIF

IF (tp) ... ELSE (fp) ... ENDIF

At runtime, IF selects execution based on a boolean
flag. If f is true (non-zero), execution continues
ahead thru the true part. If f is false (zero),
execution skips till just after ELSE to execute the

lfl«? J££V HrSE eilher Part' execution resumes
after ENDIF. ELSE and its false part are optional;
if missing, false execution skips to just after
ENDIF.

At compile-time, IF compiles OBRANCH and reserves
space for an offset at addr. addr and n are used
later for resolution of the offset and error
testing.

IMMEDIATE

Mark the most recently made definition so that when
encountered at compile time, it will be executed
rather than being compiled, i.e. the precedence bit
in its header is set. This method allows defini
tions to handle unusual compiling situations,
rather than build them into the fundamental
compiler. The user may force compilation of an
^mediate definition by Precee<3ing it with
ICOMPILE].

IN addr

A user variable containing the byte offset within
the current input text buffer from which the next
text will be accepted. WORD uses and updates the
value of IN.

INTERPRET

KEY

LATEST

The outer text interpreter which executes or
compiles text from the input stream depending on
STATE. If the word name cannot be found after a
search of CONTEXT and then CURRENT, it is converted
to a number according to the current base. That
also failing, an error message echoing the name
with a ■ ?■ will be given. Text input will be
taken according to the convention for WORD.

Leave the ascii value of the next terminal key
struck.

addr

Leave the name field address of the topmost v/ord in
the CURRENT vocabulary.

32

TINY FORTH

For the COMMODORE 64:

: UFO

15 54296 C!

16 54276 C!

34334 8583 DO

I 54272 !

80 DELAY

LOOP

0 54276 Cl

0 54296 C! ;

(volume)

(waveform triangular)

(vary frequency

of voice 1)

(wait a while)

(turn off volume)

(turn off waveform)

Now type in UFO <RETURN> to listen to the sound.

If you want to inspect the contents of memory (commonly
known as dumping), in hexadecimal, use a word like this:

: DUMP

SWAP 1+ SWAP

DO

I 4 .R

I

DO

I C§ 3 .R

LOOP

CR

5

+LOOP ;

(add 1 to ending memory addr)

(print the addr)

(print "©")

(prepare to print a line of

5 bytes of memory)

(print one byte)

(now loop 5 times)

(new line)

(add to address)

(next line has address 5 bytes

greater than last)

To dump a range of memory, say from $2000 thru $2080 you can
use the following:

HEX 2080 2000 DUMP <RETURN>

13

TINY FORTH

DUPLICATE WORD DEFINITIONS

To review, you can define a new word to TINY FORTH by using
a colon definition to compile the word.

If you try to define a word with the same name as a
previously defined word, then TINY FORTH displays a warning
message - MSG # 4 meaning that the word is not unique.

In this case, TINY FORTH goes ahead and compiles the new
word even though the word name is already in the dictionary.
Any subsequent reference to a word by that name, refers to
this last (most recent) definition.

You can remove words from the dictionary by using the word

FORGET. FORGET cccc removes the word cccc and any other
words that may. have been defined since cccc was put into the

dictionary. Let's look at this closer. Suppose we define the
following words in this order. The periods () represent
the definition of each new word.

ENTRY 1 : aaaaa ;

ENTRY 2 : ccccc ;

ENTRY 3 : ddddd ;

ENTRY 4 : eeeee •

ENTRY 5 : ccccc ;

Note that entry 5 is a duplicate word, but TINY FORTH

accepts it nonetheless. Using the word ccccc executes
definition 5. If you type FORGET ccccc, then entry 5 is
removed from the dictionary. Entries 1 thru 4 still remain

in the dictionary. Next typing FORGET ccccc again removes
entries from the dictionary. This time entries 2 thru 4 are
removed leaving only entry 1. Typing ccccc gives MSG # 0

meaning that the word is not found in the dictionary.

14

TINY FORTH

FILL

FIRST

FORGET

FORTH

HERE

HEX

HLD

HOLD

addr count b

Fill memory at the address with the specified count
of bytes b.

addr

A constant that leaves the address of the first
(lowest) block buffer.

Executed in the form :

FORGET cccc

Deletes definition named cccc from the dictionary
with all entries physically following it. In TINY
FORTH, an error message occurs if the CURRENT and

CONTEXT vocabularies are not currently the same.

The name of the primary vocabulary. Execution make
FORTH the CONTEXT vocabulary. Until additional user
vocabularies are defined, new user definitions
become a part of FORTH. FORTH is immediate, so it
will execute during the creation of a colon-
definition, to select this vocabulary at compile
time.

addr

Leave the address of the next available dictionary
location.

Sets the numeric conversion base to sixteen (hexa
decimal)

addr

A user variable that holds the address of the

latest character of text during numeric output
conversion.

Used between <# and #> to insert an ascii character
c into a pictured numeric output string, e.g. 2E
HOLD will place a decimal point.

ID.

Used within a DO-LOCP to copy the loop index to the
stack.

addr

Print a definition's name from its name field address.

31

TINY FORTH

EMPTY-BUFFERS

Mark all block-buffers as empty by filling with

zeroes. Updated blocks are not written to tape or

disk. This is also an initialization procedure
before first use of tape or disk.

ENCLOSE addrl c addrl nl n2 n3

The text scanning primitive used by WORD. From the

text address addrl and an ascii delimiting

character c, is determined by the byte offset to

the first non-delimiter character nl, the offset to
the first delimiter after the text n2, and the

offset to the first character not included. This
procedure will not process past an ascii 'null1,

treating it as an unconditional delimiter.

TINY FORTH

FMD

ENDIF

ERASF

ERROR

EXECUTE

EXPECT

FFNCF

This is an 'alias1 or duplicate definition for
UNTIL.

addr n (compile)

Occurs in a colon-definition in form:

IF ... ENDIF

IF ... FLSE ... ENDIF

At runtime, ENDIF serves only as the destination of

a forward branch from IF or ELSE. It marks the

conclusion of the conditional structure. THEN is

another name for ENDIF. Both names are supported.
See also IF and ELSE.

addr n -«

Clear a region of memory to zero from addr for n
bytes.

line

Execute error notification and restart of system.

addr —

Execute the definitionwhose code field address is

on the stack. The code field address is also called

the compilation address.

addr count

Transfer characters from tae terminal to addr,

until a <RETURN> or the count of characters have

been received. One or more nulls are added at the

end of the text.

— addr

A user variable containing an address below which

FORGFTting is trapped. To forget below this point,

the user must alter the contents of FENCE.

FILENAMES

If you use LOAD, PUT, GET or LIST, TINY FORTH searches for
files with the prefix "SCREEN". For example, if you want to
save screen 3 to a disk, then type 3 PUT and the screen is
written to the disk with the name "SCREEN311. If you want to
change the default name prefix ("SCREEN"), then use the
following technique.

20 $STRING NEWPREFIX (

NEWPREFIX $« GsSCREEN" (

SNP NEWPREFIX $! (

define string variable

max. length of 20)

move new name of prefix to

new variable)

move new variable to TINY

FORTH prefix)

Now any use of LOAD, GET, PUT, etc., will refer to the new

prefix. For example using a new prefix of ABACUS, we can
type:

2 PUT <RETURN>

saves the screen number 2 to a file named "ABACUS2". Typing

8 LOAD <RFTUPN>

searches for a file named "ABACUS8" from the tape or disk
(depending on the version in use).

30

15

TINY FORTH

GLOSSARY - NEW WORDS

addrt addrf

Procedure to move a string pointed to by addrf to
addrt. The length of the string pointed to by addrt
determines the length of the move.

$<

$>

$cyp

$STRING

Used in the form:

xxx $w ccccc"

Stores the string ccccc into the string variable
xxx, setting the current length to the length of
ccccc. There must be a blank after $". There must
be at least one character (may be another blank)
before the final ".

$1 $2 f

Leave a true flag (non-zero) if string $1 is less
than $2; otherwise leave a false flag.

$1 $2 f

Leave a true flag (non-zero) if string $1 is equal
to $2; otherwise leave a false flag.

$1 $2 f

Leave a true flag(non-zero) if string $1 is greater
than $2; otherwise leave a false flag.

$1 $2 f

Procedure to compare string $1 and $2, leaving flag
f as a result. f»0 if string $1 equals $2. f is
positive and contains the position of first unequal
character if string $1 is greater than $2. f is
negative and contains the position of first unequal

character if string $1 is less than $2.

A defining word used in the form:
n $STRING cccc

to create a string variable named cccc with a
parameter field ALLOTted n+1 bytes. The current

string length is contained in the first byte of the
parameter field. When cccc is later executed, the
address of the parameter field (starting with the
length byte) is left on the stack.

Test for non-standard input device. Leave false
(zero) if output is set from keyboard. Leave device
number otherwise.

16

TINY FORTH

DCFS>

DP

DROP

DUP

ELSE

EMIT

exceeds the limit, execution loops back to just
after DO; otherwise the loop parameters are
discarded and execution continues ahead. Both nl
and n2 are determined at runtime and may be the
result of other operations. Within a loop •I1 will
copy the current value of the index to the stack.
See I, LOOP, +LOOP, LEAVE.

When compiling within the colon-definition, DO
compiles (DO), leaves the following address addr
and n for later error checking.

A word which defines the runtime action within a
high-level defining word. DOES> alters the code
field and first parameter of the new word to exe
cute the sequence of compiled word addresses
following DOES>. Used in combination with <BUILDS.
When the DOES> part executes, it begins with the
address of the first parameter of the new word on
the stack. This allows interpretation using this
area or its contents. Typical uses include the

FORTH assembler, multi-dimensional arrays and
compiler generation.

addr

A user variable, the dictionary pointer, which
contains the address of the next free memory above
the dictionary. The value may be read by HERE and
altered by ALLOT.

Drop the number from the stack.

n n n

Duplicate the value on the stack.

addrl nl ~ addr2 n2 (compiling)
Occurs within a colon-definition in the form:

IF ... ELSE ... ENDIF

At runtime, ELSE executes after the true part
following IF. ELSE forces execution to skip over
the following false part and resumes execution
after the ENDIF. It has no stack effect.

At compile-time ELSE replaces BRANCH reserving a
branch offset, leaves the address addr2 and n2 for
error testing. ELSE also resolves the pendinq
forward branch from IF by calculating the offset
from addrl to HERE and storing at addrl.

Transmit ascii character c to the selected output
device. OUT is incremented for each character
output.

29

TINY FCRTH TINY FORTH

COUNT

CR

CREATE.

CSP

DECIMAL

addrl addr2 n

Leave the byte address addr2 and byte count n of a

message text beginning at address addrl. It is

presumed that the first byte at addrl contains the

text byte count and the actual text starts with the
second byte. Typically COUNT is followed by TYPE.

Transmits a carriage return and line feed to the

selected output device. Zeroes user variable OUT.

A defining word used in the form:
CREATE cccc

by such words as CODE and CONSTANT to create a
dictionary header for a FORTH definition. The code

field contains the address of the words parameter
field. The new word is created in the CURRENT
vocabulary.

--- addr

A user variable temporarily storing the stack

pointer position for compilation error checking.

Sets the numeric conversion BASE for decimal input-
output.

DEFINITIONS

Used in the form:

cccc DEFINITIONS

Sets the CURRENT vocabulary to the CONTEXT vocabu

lary. In the example, executing vocabulary name

cccc made in the CONTEXT vocabulary name cccc made

it the CONTEXT vocabulary and executing DEFINITIONS

made both specifify vocabulary cccc.

DIGIT nl —

nl —

— n2

~ ff

tf (ok)

(bad)

DC

Converts the ascii character c (using base nl) to

its binary equivalent n2, accompanied by a true
flag. If the onversion is invalid, leaves only a
false flag.

nl n2 (execute)

addr n (compile)

Occurs in a colon-definition in form:

DO ... LOOP

DO ... +LOOP

At runtime, DO begins a sequence with repetitive

execution controlled by a loop limit nl and an

index with initial value n2. DO removes these from
the stack. Upon reaching LOOP the index is

incremented by one. Until the new index equals or

?OUT

CLOSE

DEPTH

FSN

Test for non-standard output device. Leave false

(zero) if output is set for the screen. Leave the

device number otherwise.

addr

Close the ligical file number pointed to bv addr
(the same variable used to OPEN the file).

count

Leave the number of 2-byte items on the stack.

n addr 1

Procedure to format the screen name for read/write

operations. Uses, the variable SNP to obtain the
first portion of the name. Uses n as the screen
number. This is converted to characters using the

current BASE. Leaves the addr of where the name is

built and the length (1). (1).

GET

Read screen n into a buffer. Unlike BLOCK, this

word forces a read of the screen from tape or disk.

If the screen is currently in memory, that buffer

is reused to hold the new copy of the screen. SCR

is not updated by this word.

LM addr

Leave the address of the top of memory available

for FCRTH to store dictionary words. Normally this
is the same as FIRST.

MACHINE raddr addr

Procedure to jump to the subroutine at addr. The

6502 registers are loaded from the 4-bytes pointed

to by raddr. The register contents are stored in

the order X,Y,A,C. If C is non-zero, the carry flag
is set. If C is zero, the carry flag is cleared.

The subroutine must return via an RTS instruction.

Registers and flags are returned in the 4-bytes

pointed to by raddr. The full 6502 processor flags
are returned in C. No registers need be saved by

the user routine. Note that TINY FCRTH uses $4F-

$51, $5A-$5B and $FB-$FE. These areas must be saved

if your routine uses these areas.

OPEN addr naddr 1

* Procedure to open a logical file. The file para-

, meters are pointed to by addr. The file parameter

j is as follows:

4 1-byte logical file number

i 1-byte device number

1-byte secondary address

i The name of the file is pointed to by naddr and 1
j specified the name length. If there is no name,

28 17

TINY FORTH

then both of these parameters should be set to

zero.

PRT addr

A user variable to hold the OPEN parameters for the

printer. This variable is used by LIST to reset the
printer logical file after using BLOCK to get a
screen (because BLOCK may do a read). As delivered,

the printer is defined as logical file 4, device 4,
and secondary address 0 (upper case/graphics).

PUT n

Procedure to locate the buffer for screen n in

memory (error 5, if not found) and write the buffer

to tape or disk.

RSA addr

A user variable containing the pass registers to
MACHINE.

SETIN addr

Procedure to set the current input device. The

logical file must be previously OPENed. The logical

file number is pointed to by addr (same variable
used to OPEN the file). If addr is zero, then input

is reset to the keyboard. This routine calls the

Kernal routine CHKIN if addr is non-zero.

SETOUT addr

Procedure to set the current output device. The

logical file must be previously OPENed. The logical
file number is pointed to by addr (same variable

used to OPEN the file). If addr is zero, then

output will be reset to the screen. This routine

calls the Kernal routine CHKOUT if addr is non

zero.

SNP addr

A user variable which contains the prefix used to

create the screen name when a screen is saved or

loaded. The first byte contains the number of char

acters in the name. There is enough room in the

name for up to 16 characters. The name is suffixed

by the screen number being read/written.

TOS n

Leave the initial length of the FORTH data stack.

UA addr

Leave the address of the start of the user variable

area.

18

TINY FORTH

BUFFER

C!

C,

ce

CFA

CMOVE

COLD

COMPILE

n addr

Obtain the next memory buffer, assigning it to
block n. The addr left is the first address within
the buffer for data storage. Updates PREV and USE.

b addr

Store 8 bits at addr.

b —

Store 8 bits of b into the next available

dictionary byte, advancing the dictionary pointer.

addr b

Leave the 8 bit contents of memory address.

pfa cfa

Convert the parameter field address of a definition
to its code field address.

addrl addr2 count

Move the number of bytes specified by count

beginning at addrl to addr2. The contents of addrl
is moved first proceeding toward high memory.

The cold start procedure to adjust the dictionary
pointer to the minimum startdard and restart via
ABORT. May be called from the terminal to remove

application programs and restart.

When the word containing COMPILE executers, the

execution address of the word following COMPILE is

copied (compiled) into the dictionary. This allows
specific compilation situations to be handled in
additionto simply compiling an execution address
(which the interpreter already does).

CONSTANT n

A defining v/ord used in the form:

n CONSTANT cccc

to create word cccc, with its parameter field

.containing n. When cccc is later executed, it will

push the value of n to the stack.

CONTEXT addr

A user variable containing a pointer to the vocabu

lary within which dictionary searches will first
begin.

27

TINY FORTH TINY FORTH

BASE addr

A user variable containing the current number base
used for input and output conversion,

BEGIN addr n (compiling)

Occurs in a colon-definition in form:
BEGIN ... UNTIL

BEGIN ... AGAIN

BEGIN ... WHILF ... REPEAT

At runtime, BEGIN marks the start of a sequence

that may be repetitively executed. It serves as a

return point from the corresponding UNTIL, AGAIN or
REPEAT. When executing UNTIL, a return to BEGIN
will occur if the top of the stack is false; for

AGAIN and REPEAT a return to BEGIN always occurs.

At compile time BEGIN leaves its return address and
n for compiler error checking.

BL c

A constant that leaves the ascii value for a
"blank" .

BLANKS addr count

Fill an area of memory beginning at addr v/ith
blanks for a length of count.

BLOCK n addr

Leave the memory addr of the block byte containing
block n. If the block is not already in memory, it

is tranferred from tape or disk to whichever buffer
was most recently written.

BLOCK-READ addrl addr2 count f

Read the file with the name pointed to by addr2

into the area starting at addrl. The file name
length is specified by count. If count » 0, the and
the device is tape, then the next file is read,
regardless of name, f is the I/O error code.

BLOCK-WRITE addrl addr2 addr3 count

Write memory to tape or disk. The memory written

starts at addrl and ends at addr2. addr3 points to
the file name and has a file name length specified
by count.

GLOSSARY - STANDARD WORDS

BRANCH

The runtime procedure to unconditionally branch. An
inline offset isadded to the interpretive pointer
IP to branch ahead or back. BRANCH is compile by
ELSE, AGAIN, REPEAT.

«9,Ka/y,COntainS a11 Of the word definitions in TINY
h. The definitions are presented in the order of their

Ascii sort.

The first line of each entry shows a symbolic description of
the action of the word (also called procedure) on the para
meter stack. The symbols indicate the order in which input
parameters have been placed on the stack. The dashes "---"
indicate the execution point; any parameters left on the

I^^ }?£'£%%£* * *" i °f
The symbols include:

addr

b

c

f

ff
n

u

tf

memory address

8 bit byte (i.e. hi 8 bits zero)
7 bit ascii character (hi 9 bits zero)
boolean flag. zero » false, nonzero = true
boolean false flag = zero
16 bit signed integer number
16 bit unsigned integer number
boolean true flag = non-zero

Unless otherwise noted, all references to numbers are 16 bit
signed integers. The high byte of the number is on top of
the stack, with the sign in the leftmost bit.

All arithmetic is implicitly 16 bit signed integer math.

• n addr

Store 16 bits of n at address. Pronounced "store".

•CSP

#>

#S

Save the stack position in CSP. Used as part of
the compiler security.

nl —- n2

Generate from number nl, the next ascii character
which is placed in an output string. Result n2 is
the quotient after division by BASE, and is main
tained for further processing. Used between <# and
#>• See #S.

nl addr count

Terminates numeric output conversion by droppinq
nl, leaving the text address and character count
suitable for TYPE.

nl n2

Generates ascii text in the text output buffer, by
the use of. #, until a zero number n2 results. Used
between <# and #>.

26
19

TINY FORTH

add r

Used in the form:

1 nnnn

Leaves the parameter field address of dictionary

word nnnn. As a compiler directive, executes a

colon-definition to compile the address as a

literal. If the word is not found after a search of
CONTEXT and CURRENT, an appropriate error message

is given. Pronounced "tick".

Used in the form:

(cccc)

Ignore a comment that will be delimited by a right

parenthesis. May occur during execution or in a

colon-definition. A blank after the leading paren

thesis is required. At least one character must

follow the blank.

(+LOOP)

(ABORT)

(DO)

(FIND)

(LOOP)

The runtime procedure, compiled by ." which trans

mits the following in-line text to the selected

output device. See ."

The runtime procedure compiled by +LOOP, which

increments the loop index by n and tests for loop

completion. See +LOOP.

Executes after an error. This word normally exe

cutes ABORT, but may be altered (with care) to a

user's alternative procedure.

The runtime procedure compiled by DO which moves

the loop control parameters to the return stack.

See DO.

addrl addr2 pfa b tf (ok)

addrl addr2 ff (bad)

Searches the dictionary starting at the name field

address addr2, matching to the text at address

addrl. Returns parameter field address, length byte

b of name field and boolean true for a good match.

If no match is found, only a boolean false is left.

The runtime procedure compiled by LOOP which incre

ments the loop index and tests for loop completion.

See LOOP.

20

TINY FORTH

?STACK

Issue an error message

bounds.

if the stack is out of

7TERMINAL f

Perform a test of the terminal keyboard for the

RUN/STOP key. A true flag indicates that it was

pressed.

@ addr —- n

Leave the 16 bit contents of addr.

ABORT

ABS

AGAIN

ALLOT

AND

B/BLK

B/SCR

BACK

Clear the stacks and enter the execution state.

Redisplay the initial TINY FORTH prompt and return

control to the operators terminal.

n u

Leave the absolute value of n as u.

addr n (compiling)

Used in a colon-definition in the form:

BEGIN ... AGAIN

At runtime, AGAIN forces execution to return to

corresponding BEGIN. There is no errect on the

stack. Execution cannot leave this loop (unless R>

DROP is executed one level below).

At compile time, AGAIN compiles BRANCH with an

offset from HERE to addr. n is used for compile-

time error checking.

n

Add the signed number n to the dictionary pointer

DP. May be used to reserve dictionary space or re-

origin memory.

nl n2 n3

Leave the bitwise logical AND of nl and n2 as n3.

This constant leaves the number of bytes per

buffer, they byte count read by BLOCK.

This constatnt leaves the number of blocks per

editing screen.

addr

Calculate the backward branch offset from HERE to

addr and compile into the next available dictionary

memory address.

25

TINY FORTH
TINY FORTH

<BUILDS

>R

7COMP

?CSP

TERROR

?EXEC

Used within a colon-definition:
: cccc <BUILDS

DCES>

Each time cccc is executed, <BUILDS defines a new
word with a high-level execution procedure. Execu
ting cccc in the form:

cccc nnnn

uses <BUILDS to create a dictionary entry for nnnn
with a call to the DOES> part for nnnn. When nnnn
is later executed, it has the address of its para
meter area on the stack and executes the words
after DOES> in cccc. <BUILDS and DOES> allow run
time procedures to written in high-level rather
than in assembler code.

nl n2 f

Leave a true flag if nl

false flag.
n2; otherwise leave a

nl n2 f

Leave a true flag if nl is greater than n2; other
wise leave a false flag.

n

Remove a number from the computation stack and
place as the most accessable on the return stack.
Use should be balanced with R> in the same defini
tion.

addr

Print the value contained at the address in free
format according to the current base.

Issue error message if not compiling.

Issue error message if stack position differs from
value saved in CSP.

f n

Issue an error message number nf if the boolean
flag is true.

?LOADING

Issue an error message if not executing.

Issue an error message if not loading.

7PAIRS nl n2

Issue an error message if nl does not equal n2. The
message indicates that compiled conditionals do not
match.

(NUMBER) nl addrl n2 addr2

Convert the ascii text beginning at addr+1 with
regard to BASE. The new value is accumulated into
number nl, being left as n2. Addr2 is the address
of the first unconvertable digit. Used by NUMBER.

* nl n2 prod

Leave the signed product of two signed numbers.

+ nl n2 sum

Leave the sum of nl + n2.

+! n addr

Add n to the value at the address. Pronounced
"plus-store".

+- nl n2 n3

Apply the sign of n2 to nl, which is left as n3.

+BUF addrl addr2 f

Advance the buffer address addrl to the address of
the next buffer addr2. Boolean f is false when
addr2 is the buffer presently pointed to by
variable PREV.

+LOOP nl (run)

addr n2 (compile)
Used in a colon-definition in the form:

DO ... nl +LOOP

At runtime, +LOOP controls branching back to the
corresponding DO base on nl, the loop index and the
loop limit. The signed increment nl is added to the
index and the total compared to the limit. The
branch back to DO occurs until the new index is
equal to or greater than the limit (nl>0), or until
the new index is equal to or less than the limit
(nl<0). Upon exiting the loop, the parameters are
discarded and execution continues ahead.

At compile time, +LOCP compiles the runtime word
(+LOOP) and the branch offset computed from HERE to
the address left on the stack by DO. n2 is used for
compile time error checking.

+CRIGIN n addr

Leave the memory address relative by n to the
origin of TINY FORTH, n is the minimum address
unit, a byte. This definition is used to access or
modify the boot-up parameters.

n

Store n into the next available dictionary memory
cell, advancing the dictionary pointer. Pronounced
"comma•.

24

21

TINY FORTH

nl n2 diff

Leave the difference of nl - n2.

Continue interpretation with the next disk or tape
screen. Pronounced "next screen".

-DUP nl nl (if zero)

nl — nl nl (non-zero)

Reproduce nl only if it is non-zero. This is

usually used to copy a value just before IF, to

eliminate the need for an ELSE part to drop it.

-FIND pfa b tf (found)

ff (non-found)
Accepts the next text word (delimited by blanks) in

the input stream to HERE, and searches the CONTEXT

and then CURRENT vocabularies for a matching entry.

If found, the dictionary entry's parameter field
address, its length byte b, and a boolean true is

left. Otherwise, only a boolean false is left.

Prints a number from a signed 16 bit two's comple
ment value, converted according to the numeric

BASE. A trailing blank follows. Pronounced "dot".

•R

/MOD

Used in the form:

." cccc"

Compiles an in-line string cccc delimited by a
trailing ", with an execution procedure to transmit

the text to the selected output device. If executed

outside a definition, a ." will immediately print

the text until the final n. There must be a blank

after the .". The blank is not printed. There must
be at least one character (may be another blank)
before the final ".

nl n2

Print the number nl right aligned in a field whose
width is n2. No following blank is printed.

nl n2 quot

Leave the signed quotient of nl / n2.

nl n2 rem quot

Leave the remainder and signed quotient of nl / n2.

The remainder has the sign of the dividend.

0 12 3 n

These small numbers are used so often that it is

attractive to define them by name in the dictionary
as constantsas constants.

22

TINY FORTH

0<

OBRANCH

1+

1-

2+

n f

Leave a true flag if the number is less than zero
(negative), otherwise leave a false flag.

1 n f

Leave a true flag is the number is equal to zero,
otherwise leave a false flag.

The runtime procedure to conditionally branch. If f
is false (zero), the following in-line parameter is

added to the interpretive pointer to branch ahead
or back. Compiled by IF, UNTIL, and WHILE.

nl n2

Leave nl incremented by 1.

nl — n2

Leave nl decremented by 1.

nl n2

Leave nl incremented by 2.

Used in the form called a colon-definition;
: cccc ... ;

Creates a dictionary entry defining cccc as equiva
lent to the following sequence of FORTH word defi
nitions '...' until the next ';'. The compiling
process is done by the text interpreter as long as
STATE is non-zero. Other details are that the
CONTEXT vocabulary is set to the CURRENT vocabulary
and that words with the precedence bit set (P) are
executed rather than being compiled.

;S

<#

Terminate a colon-definition and stop further com
pilation. Compiles the runtime ;S

Stop interpretation of a screen. ?S is also the
runtime word compiled at the end of a colon-defini
tion which returns execution to the calling
procedure.

nl n2 f

Leave a true flag if nl is less than n2; otherwise
leave a false flag.

Setup for pictured numeric output formatting using
the words:

<# # #S SIGN #>

The conversion is done on a number, producing text
at PAD.

23

TINY FORTH

nl n2 diff

Leave the difference of nl - n2.

Continue interpretation with the next disk or tape
screen. Pronounced "next screen".

-DUP nl nl (if zero)

nl — nl nl (non-zero)

Reproduce nl only if it is non-zero. This is

usually used to copy a value just before IF, to

eliminate the need for an ELSE part to drop it.

-FIND pfa b tf (found)

ff (non-found)
Accepts the next text word (delimited by blanks) in

the input stream to HERE, and searches the CONTEXT

and then CURRENT vocabularies for a matching entry.

If found, the dictionary entry's parameter field
address, its length byte b, and a boolean true is

left. Otherwise, only a boolean false is left.

Prints a number from a signed 16 bit two's comple
ment value, converted according to the numeric

BASE. A trailing blank follows. Pronounced "dot".

•R

/MOD

Used in the form:

." cccc"

Compiles an in-line string cccc delimited by a
trailing ", with an execution procedure to transmit

the text to the selected output device. If executed

outside a definition, a ." will immediately print

the text until the final n. There must be a blank

after the .". The blank is not printed. There must
be at least one character (may be another blank)
before the final ".

nl n2

Print the number nl right aligned in a field whose
width is n2. No following blank is printed.

nl n2 quot

Leave the signed quotient of nl / n2.

nl n2 rem quot

Leave the remainder and signed quotient of nl / n2.

The remainder has the sign of the dividend.

0 12 3 n

These small numbers are used so often that it is

attractive to define them by name in the dictionary
as constantsas constants.

22

TINY FORTH

0<

OBRANCH

1+

1-

2+

n f

Leave a true flag if the number is less than zero
(negative), otherwise leave a false flag.

1 n f

Leave a true flag is the number is equal to zero,
otherwise leave a false flag.

The runtime procedure to conditionally branch. If f
is false (zero), the following in-line parameter is

added to the interpretive pointer to branch ahead
or back. Compiled by IF, UNTIL, and WHILE.

nl n2

Leave nl incremented by 1.

nl — n2

Leave nl decremented by 1.

nl n2

Leave nl incremented by 2.

Used in the form called a colon-definition;
: cccc ... ;

Creates a dictionary entry defining cccc as equiva
lent to the following sequence of FORTH word defi
nitions '...' until the next ';'. The compiling
process is done by the text interpreter as long as
STATE is non-zero. Other details are that the
CONTEXT vocabulary is set to the CURRENT vocabulary
and that words with the precedence bit set (P) are
executed rather than being compiled.

;S

<#

Terminate a colon-definition and stop further com
pilation. Compiles the runtime ;S

Stop interpretation of a screen. ?S is also the
runtime word compiled at the end of a colon-defini
tion which returns execution to the calling
procedure.

nl n2 f

Leave a true flag if nl is less than n2; otherwise
leave a false flag.

Setup for pictured numeric output formatting using
the words:

<# # #S SIGN #>

The conversion is done on a number, producing text
at PAD.

23

TINY FORTH
TINY FORTH

<BUILDS

>R

7COMP

?CSP

TERROR

?EXEC

Used within a colon-definition:
: cccc <BUILDS

DCES>

Each time cccc is executed, <BUILDS defines a new
word with a high-level execution procedure. Execu
ting cccc in the form:

cccc nnnn

uses <BUILDS to create a dictionary entry for nnnn
with a call to the DOES> part for nnnn. When nnnn
is later executed, it has the address of its para
meter area on the stack and executes the words
after DOES> in cccc. <BUILDS and DOES> allow run
time procedures to written in high-level rather
than in assembler code.

nl n2 f

Leave a true flag if nl

false flag.
n2; otherwise leave a

nl n2 f

Leave a true flag if nl is greater than n2; other
wise leave a false flag.

n

Remove a number from the computation stack and
place as the most accessable on the return stack.
Use should be balanced with R> in the same defini
tion.

addr

Print the value contained at the address in free
format according to the current base.

Issue error message if not compiling.

Issue error message if stack position differs from
value saved in CSP.

f n

Issue an error message number nf if the boolean
flag is true.

?LOADING

Issue an error message if not executing.

Issue an error message if not loading.

7PAIRS nl n2

Issue an error message if nl does not equal n2. The
message indicates that compiled conditionals do not
match.

(NUMBER) nl addrl n2 addr2

Convert the ascii text beginning at addr+1 with
regard to BASE. The new value is accumulated into
number nl, being left as n2. Addr2 is the address
of the first unconvertable digit. Used by NUMBER.

* nl n2 prod

Leave the signed product of two signed numbers.

+ nl n2 sum

Leave the sum of nl + n2.

+! n addr

Add n to the value at the address. Pronounced
"plus-store".

+- nl n2 n3

Apply the sign of n2 to nl, which is left as n3.

+BUF addrl addr2 f

Advance the buffer address addrl to the address of
the next buffer addr2. Boolean f is false when
addr2 is the buffer presently pointed to by
variable PREV.

+LOOP nl (run)

addr n2 (compile)
Used in a colon-definition in the form:

DO ... nl +LOOP

At runtime, +LOOP controls branching back to the
corresponding DO base on nl, the loop index and the
loop limit. The signed increment nl is added to the
index and the total compared to the limit. The
branch back to DO occurs until the new index is
equal to or greater than the limit (nl>0), or until
the new index is equal to or less than the limit
(nl<0). Upon exiting the loop, the parameters are
discarded and execution continues ahead.

At compile time, +LOCP compiles the runtime word
(+LOOP) and the branch offset computed from HERE to
the address left on the stack by DO. n2 is used for
compile time error checking.

+CRIGIN n addr

Leave the memory address relative by n to the
origin of TINY FORTH, n is the minimum address
unit, a byte. This definition is used to access or
modify the boot-up parameters.

n

Store n into the next available dictionary memory
cell, advancing the dictionary pointer. Pronounced
"comma•.

24

21

TINY FORTH

add r

Used in the form:

1 nnnn

Leaves the parameter field address of dictionary

word nnnn. As a compiler directive, executes a

colon-definition to compile the address as a

literal. If the word is not found after a search of
CONTEXT and CURRENT, an appropriate error message

is given. Pronounced "tick".

Used in the form:

(cccc)

Ignore a comment that will be delimited by a right

parenthesis. May occur during execution or in a

colon-definition. A blank after the leading paren

thesis is required. At least one character must

follow the blank.

(+LOOP)

(ABORT)

(DO)

(FIND)

(LOOP)

The runtime procedure, compiled by ." which trans

mits the following in-line text to the selected

output device. See ."

The runtime procedure compiled by +LOOP, which

increments the loop index by n and tests for loop

completion. See +LOOP.

Executes after an error. This word normally exe

cutes ABORT, but may be altered (with care) to a

user's alternative procedure.

The runtime procedure compiled by DO which moves

the loop control parameters to the return stack.

See DO.

addrl addr2 pfa b tf (ok)

addrl addr2 ff (bad)

Searches the dictionary starting at the name field

address addr2, matching to the text at address

addrl. Returns parameter field address, length byte

b of name field and boolean true for a good match.

If no match is found, only a boolean false is left.

The runtime procedure compiled by LOOP which incre

ments the loop index and tests for loop completion.

See LOOP.

20

TINY FORTH

?STACK

Issue an error message

bounds.

if the stack is out of

7TERMINAL f

Perform a test of the terminal keyboard for the

RUN/STOP key. A true flag indicates that it was

pressed.

@ addr —- n

Leave the 16 bit contents of addr.

ABORT

ABS

AGAIN

ALLOT

AND

B/BLK

B/SCR

BACK

Clear the stacks and enter the execution state.

Redisplay the initial TINY FORTH prompt and return

control to the operators terminal.

n u

Leave the absolute value of n as u.

addr n (compiling)

Used in a colon-definition in the form:

BEGIN ... AGAIN

At runtime, AGAIN forces execution to return to

corresponding BEGIN. There is no errect on the

stack. Execution cannot leave this loop (unless R>

DROP is executed one level below).

At compile time, AGAIN compiles BRANCH with an

offset from HERE to addr. n is used for compile-

time error checking.

n

Add the signed number n to the dictionary pointer

DP. May be used to reserve dictionary space or re-

origin memory.

nl n2 n3

Leave the bitwise logical AND of nl and n2 as n3.

This constant leaves the number of bytes per

buffer, they byte count read by BLOCK.

This constatnt leaves the number of blocks per

editing screen.

addr

Calculate the backward branch offset from HERE to

addr and compile into the next available dictionary

memory address.

25

TINY FORTH TINY FORTH

BASE addr

A user variable containing the current number base
used for input and output conversion,

BEGIN addr n (compiling)

Occurs in a colon-definition in form:
BEGIN ... UNTIL

BEGIN ... AGAIN

BEGIN ... WHILF ... REPEAT

At runtime, BEGIN marks the start of a sequence

that may be repetitively executed. It serves as a

return point from the corresponding UNTIL, AGAIN or
REPEAT. When executing UNTIL, a return to BEGIN
will occur if the top of the stack is false; for

AGAIN and REPEAT a return to BEGIN always occurs.

At compile time BEGIN leaves its return address and
n for compiler error checking.

BL c

A constant that leaves the ascii value for a
"blank" .

BLANKS addr count

Fill an area of memory beginning at addr v/ith
blanks for a length of count.

BLOCK n addr

Leave the memory addr of the block byte containing
block n. If the block is not already in memory, it

is tranferred from tape or disk to whichever buffer
was most recently written.

BLOCK-READ addrl addr2 count f

Read the file with the name pointed to by addr2

into the area starting at addrl. The file name
length is specified by count. If count » 0, the and
the device is tape, then the next file is read,
regardless of name, f is the I/O error code.

BLOCK-WRITE addrl addr2 addr3 count

Write memory to tape or disk. The memory written

starts at addrl and ends at addr2. addr3 points to
the file name and has a file name length specified
by count.

GLOSSARY - STANDARD WORDS

BRANCH

The runtime procedure to unconditionally branch. An
inline offset isadded to the interpretive pointer
IP to branch ahead or back. BRANCH is compile by
ELSE, AGAIN, REPEAT.

«9,Ka/y,COntainS a11 Of the word definitions in TINY
h. The definitions are presented in the order of their

Ascii sort.

The first line of each entry shows a symbolic description of
the action of the word (also called procedure) on the para
meter stack. The symbols indicate the order in which input
parameters have been placed on the stack. The dashes "---"
indicate the execution point; any parameters left on the

I^^ }?£'£%%£* * *" i °f
The symbols include:

addr

b

c

f

ff
n

u

tf

memory address

8 bit byte (i.e. hi 8 bits zero)
7 bit ascii character (hi 9 bits zero)
boolean flag. zero » false, nonzero = true
boolean false flag = zero
16 bit signed integer number
16 bit unsigned integer number
boolean true flag = non-zero

Unless otherwise noted, all references to numbers are 16 bit
signed integers. The high byte of the number is on top of
the stack, with the sign in the leftmost bit.

All arithmetic is implicitly 16 bit signed integer math.

• n addr

Store 16 bits of n at address. Pronounced "store".

•CSP

#>

#S

Save the stack position in CSP. Used as part of
the compiler security.

nl —- n2

Generate from number nl, the next ascii character
which is placed in an output string. Result n2 is
the quotient after division by BASE, and is main
tained for further processing. Used between <# and
#>• See #S.

nl addr count

Terminates numeric output conversion by droppinq
nl, leaving the text address and character count
suitable for TYPE.

nl n2

Generates ascii text in the text output buffer, by
the use of. #, until a zero number n2 results. Used
between <# and #>.

26
19

TINY FORTH

then both of these parameters should be set to

zero.

PRT addr

A user variable to hold the OPEN parameters for the

printer. This variable is used by LIST to reset the
printer logical file after using BLOCK to get a
screen (because BLOCK may do a read). As delivered,

the printer is defined as logical file 4, device 4,
and secondary address 0 (upper case/graphics).

PUT n

Procedure to locate the buffer for screen n in

memory (error 5, if not found) and write the buffer

to tape or disk.

RSA addr

A user variable containing the pass registers to
MACHINE.

SETIN addr

Procedure to set the current input device. The

logical file must be previously OPENed. The logical

file number is pointed to by addr (same variable
used to OPEN the file). If addr is zero, then input

is reset to the keyboard. This routine calls the

Kernal routine CHKIN if addr is non-zero.

SETOUT addr

Procedure to set the current output device. The

logical file must be previously OPENed. The logical
file number is pointed to by addr (same variable

used to OPEN the file). If addr is zero, then

output will be reset to the screen. This routine

calls the Kernal routine CHKOUT if addr is non

zero.

SNP addr

A user variable which contains the prefix used to

create the screen name when a screen is saved or

loaded. The first byte contains the number of char

acters in the name. There is enough room in the

name for up to 16 characters. The name is suffixed

by the screen number being read/written.

TOS n

Leave the initial length of the FORTH data stack.

UA addr

Leave the address of the start of the user variable

area.

18

TINY FORTH

BUFFER

C!

C,

ce

CFA

CMOVE

COLD

COMPILE

n addr

Obtain the next memory buffer, assigning it to
block n. The addr left is the first address within
the buffer for data storage. Updates PREV and USE.

b addr

Store 8 bits at addr.

b —

Store 8 bits of b into the next available

dictionary byte, advancing the dictionary pointer.

addr b

Leave the 8 bit contents of memory address.

pfa cfa

Convert the parameter field address of a definition
to its code field address.

addrl addr2 count

Move the number of bytes specified by count

beginning at addrl to addr2. The contents of addrl
is moved first proceeding toward high memory.

The cold start procedure to adjust the dictionary
pointer to the minimum startdard and restart via
ABORT. May be called from the terminal to remove

application programs and restart.

When the word containing COMPILE executers, the

execution address of the word following COMPILE is

copied (compiled) into the dictionary. This allows
specific compilation situations to be handled in
additionto simply compiling an execution address
(which the interpreter already does).

CONSTANT n

A defining v/ord used in the form:

n CONSTANT cccc

to create word cccc, with its parameter field

.containing n. When cccc is later executed, it will

push the value of n to the stack.

CONTEXT addr

A user variable containing a pointer to the vocabu

lary within which dictionary searches will first
begin.

27

TINY FCRTH TINY FORTH

COUNT

CR

CREATE.

CSP

DECIMAL

addrl addr2 n

Leave the byte address addr2 and byte count n of a

message text beginning at address addrl. It is

presumed that the first byte at addrl contains the

text byte count and the actual text starts with the
second byte. Typically COUNT is followed by TYPE.

Transmits a carriage return and line feed to the

selected output device. Zeroes user variable OUT.

A defining word used in the form:
CREATE cccc

by such words as CODE and CONSTANT to create a
dictionary header for a FORTH definition. The code

field contains the address of the words parameter
field. The new word is created in the CURRENT
vocabulary.

--- addr

A user variable temporarily storing the stack

pointer position for compilation error checking.

Sets the numeric conversion BASE for decimal input-
output.

DEFINITIONS

Used in the form:

cccc DEFINITIONS

Sets the CURRENT vocabulary to the CONTEXT vocabu

lary. In the example, executing vocabulary name

cccc made in the CONTEXT vocabulary name cccc made

it the CONTEXT vocabulary and executing DEFINITIONS

made both specifify vocabulary cccc.

DIGIT nl —

nl —

— n2

~ ff

tf (ok)

(bad)

DC

Converts the ascii character c (using base nl) to

its binary equivalent n2, accompanied by a true
flag. If the onversion is invalid, leaves only a
false flag.

nl n2 (execute)

addr n (compile)

Occurs in a colon-definition in form:

DO ... LOOP

DO ... +LOOP

At runtime, DO begins a sequence with repetitive

execution controlled by a loop limit nl and an

index with initial value n2. DO removes these from
the stack. Upon reaching LOOP the index is

incremented by one. Until the new index equals or

?OUT

CLOSE

DEPTH

FSN

Test for non-standard output device. Leave false

(zero) if output is set for the screen. Leave the

device number otherwise.

addr

Close the ligical file number pointed to bv addr
(the same variable used to OPEN the file).

count

Leave the number of 2-byte items on the stack.

n addr 1

Procedure to format the screen name for read/write

operations. Uses, the variable SNP to obtain the
first portion of the name. Uses n as the screen
number. This is converted to characters using the

current BASE. Leaves the addr of where the name is

built and the length (1). (1).

GET

Read screen n into a buffer. Unlike BLOCK, this

word forces a read of the screen from tape or disk.

If the screen is currently in memory, that buffer

is reused to hold the new copy of the screen. SCR

is not updated by this word.

LM addr

Leave the address of the top of memory available

for FCRTH to store dictionary words. Normally this
is the same as FIRST.

MACHINE raddr addr

Procedure to jump to the subroutine at addr. The

6502 registers are loaded from the 4-bytes pointed

to by raddr. The register contents are stored in

the order X,Y,A,C. If C is non-zero, the carry flag
is set. If C is zero, the carry flag is cleared.

The subroutine must return via an RTS instruction.

Registers and flags are returned in the 4-bytes

pointed to by raddr. The full 6502 processor flags
are returned in C. No registers need be saved by

the user routine. Note that TINY FCRTH uses $4F-

$51, $5A-$5B and $FB-$FE. These areas must be saved

if your routine uses these areas.

OPEN addr naddr 1

* Procedure to open a logical file. The file para-

, meters are pointed to by addr. The file parameter

j is as follows:

4 1-byte logical file number

i 1-byte device number

1-byte secondary address

i The name of the file is pointed to by naddr and 1
j specified the name length. If there is no name,

28 17

TINY FORTH

GLOSSARY - NEW WORDS

addrt addrf

Procedure to move a string pointed to by addrf to
addrt. The length of the string pointed to by addrt
determines the length of the move.

$<

$>

$cyp

$STRING

Used in the form:

xxx $w ccccc"

Stores the string ccccc into the string variable
xxx, setting the current length to the length of
ccccc. There must be a blank after $". There must
be at least one character (may be another blank)
before the final ".

$1 $2 f

Leave a true flag (non-zero) if string $1 is less
than $2; otherwise leave a false flag.

$1 $2 f

Leave a true flag (non-zero) if string $1 is equal
to $2; otherwise leave a false flag.

$1 $2 f

Leave a true flag(non-zero) if string $1 is greater
than $2; otherwise leave a false flag.

$1 $2 f

Procedure to compare string $1 and $2, leaving flag
f as a result. f»0 if string $1 equals $2. f is
positive and contains the position of first unequal
character if string $1 is greater than $2. f is
negative and contains the position of first unequal

character if string $1 is less than $2.

A defining word used in the form:
n $STRING cccc

to create a string variable named cccc with a
parameter field ALLOTted n+1 bytes. The current

string length is contained in the first byte of the
parameter field. When cccc is later executed, the
address of the parameter field (starting with the
length byte) is left on the stack.

Test for non-standard input device. Leave false
(zero) if output is set from keyboard. Leave device
number otherwise.

16

TINY FORTH

DCFS>

DP

DROP

DUP

ELSE

EMIT

exceeds the limit, execution loops back to just
after DO; otherwise the loop parameters are
discarded and execution continues ahead. Both nl
and n2 are determined at runtime and may be the
result of other operations. Within a loop •I1 will
copy the current value of the index to the stack.
See I, LOOP, +LOOP, LEAVE.

When compiling within the colon-definition, DO
compiles (DO), leaves the following address addr
and n for later error checking.

A word which defines the runtime action within a
high-level defining word. DOES> alters the code
field and first parameter of the new word to exe
cute the sequence of compiled word addresses
following DOES>. Used in combination with <BUILDS.
When the DOES> part executes, it begins with the
address of the first parameter of the new word on
the stack. This allows interpretation using this
area or its contents. Typical uses include the

FORTH assembler, multi-dimensional arrays and
compiler generation.

addr

A user variable, the dictionary pointer, which
contains the address of the next free memory above
the dictionary. The value may be read by HERE and
altered by ALLOT.

Drop the number from the stack.

n n n

Duplicate the value on the stack.

addrl nl ~ addr2 n2 (compiling)
Occurs within a colon-definition in the form:

IF ... ELSE ... ENDIF

At runtime, ELSE executes after the true part
following IF. ELSE forces execution to skip over
the following false part and resumes execution
after the ENDIF. It has no stack effect.

At compile-time ELSE replaces BRANCH reserving a
branch offset, leaves the address addr2 and n2 for
error testing. ELSE also resolves the pendinq
forward branch from IF by calculating the offset
from addrl to HERE and storing at addrl.

Transmit ascii character c to the selected output
device. OUT is incremented for each character
output.

29

TINY FORTH

EMPTY-BUFFERS

Mark all block-buffers as empty by filling with

zeroes. Updated blocks are not written to tape or

disk. This is also an initialization procedure
before first use of tape or disk.

ENCLOSE addrl c addrl nl n2 n3

The text scanning primitive used by WORD. From the

text address addrl and an ascii delimiting

character c, is determined by the byte offset to

the first non-delimiter character nl, the offset to
the first delimiter after the text n2, and the

offset to the first character not included. This
procedure will not process past an ascii 'null1,

treating it as an unconditional delimiter.

TINY FORTH

FMD

ENDIF

ERASF

ERROR

EXECUTE

EXPECT

FFNCF

This is an 'alias1 or duplicate definition for
UNTIL.

addr n (compile)

Occurs in a colon-definition in form:

IF ... ENDIF

IF ... FLSE ... ENDIF

At runtime, ENDIF serves only as the destination of

a forward branch from IF or ELSE. It marks the

conclusion of the conditional structure. THEN is

another name for ENDIF. Both names are supported.
See also IF and ELSE.

addr n -«

Clear a region of memory to zero from addr for n
bytes.

line

Execute error notification and restart of system.

addr —

Execute the definitionwhose code field address is

on the stack. The code field address is also called

the compilation address.

addr count

Transfer characters from tae terminal to addr,

until a <RETURN> or the count of characters have

been received. One or more nulls are added at the

end of the text.

— addr

A user variable containing an address below which

FORGFTting is trapped. To forget below this point,

the user must alter the contents of FENCE.

FILENAMES

If you use LOAD, PUT, GET or LIST, TINY FORTH searches for
files with the prefix "SCREEN". For example, if you want to
save screen 3 to a disk, then type 3 PUT and the screen is
written to the disk with the name "SCREEN311. If you want to
change the default name prefix ("SCREEN"), then use the
following technique.

20 $STRING NEWPREFIX (

NEWPREFIX $« GsSCREEN" (

SNP NEWPREFIX $! (

define string variable

max. length of 20)

move new name of prefix to

new variable)

move new variable to TINY

FORTH prefix)

Now any use of LOAD, GET, PUT, etc., will refer to the new

prefix. For example using a new prefix of ABACUS, we can
type:

2 PUT <RETURN>

saves the screen number 2 to a file named "ABACUS2". Typing

8 LOAD <RFTUPN>

searches for a file named "ABACUS8" from the tape or disk
(depending on the version in use).

30

15

TINY FORTH

DUPLICATE WORD DEFINITIONS

To review, you can define a new word to TINY FORTH by using
a colon definition to compile the word.

If you try to define a word with the same name as a
previously defined word, then TINY FORTH displays a warning
message - MSG # 4 meaning that the word is not unique.

In this case, TINY FORTH goes ahead and compiles the new
word even though the word name is already in the dictionary.
Any subsequent reference to a word by that name, refers to
this last (most recent) definition.

You can remove words from the dictionary by using the word

FORGET. FORGET cccc removes the word cccc and any other
words that may. have been defined since cccc was put into the

dictionary. Let's look at this closer. Suppose we define the
following words in this order. The periods () represent
the definition of each new word.

ENTRY 1 : aaaaa ;

ENTRY 2 : ccccc ;

ENTRY 3 : ddddd ;

ENTRY 4 : eeeee •

ENTRY 5 : ccccc ;

Note that entry 5 is a duplicate word, but TINY FORTH

accepts it nonetheless. Using the word ccccc executes
definition 5. If you type FORGET ccccc, then entry 5 is
removed from the dictionary. Entries 1 thru 4 still remain

in the dictionary. Next typing FORGET ccccc again removes
entries from the dictionary. This time entries 2 thru 4 are
removed leaving only entry 1. Typing ccccc gives MSG # 0

meaning that the word is not found in the dictionary.

14

TINY FORTH

FILL

FIRST

FORGET

FORTH

HERE

HEX

HLD

HOLD

addr count b

Fill memory at the address with the specified count
of bytes b.

addr

A constant that leaves the address of the first
(lowest) block buffer.

Executed in the form :

FORGET cccc

Deletes definition named cccc from the dictionary
with all entries physically following it. In TINY
FORTH, an error message occurs if the CURRENT and

CONTEXT vocabularies are not currently the same.

The name of the primary vocabulary. Execution make
FORTH the CONTEXT vocabulary. Until additional user
vocabularies are defined, new user definitions
become a part of FORTH. FORTH is immediate, so it
will execute during the creation of a colon-
definition, to select this vocabulary at compile
time.

addr

Leave the address of the next available dictionary
location.

Sets the numeric conversion base to sixteen (hexa
decimal)

addr

A user variable that holds the address of the

latest character of text during numeric output
conversion.

Used between <# and #> to insert an ascii character
c into a pictured numeric output string, e.g. 2E
HOLD will place a decimal point.

ID.

Used within a DO-LOCP to copy the loop index to the
stack.

addr

Print a definition's name from its name field address.

31

TINY FORTH

IF f (runtime)
addr ' n (compile)

Occurs in a colon-definition in form:
IF (tp) ... ENDIF

IF (tp) ... ELSE (fp) ... ENDIF

At runtime, IF selects execution based on a boolean
flag. If f is true (non-zero), execution continues
ahead thru the true part. If f is false (zero),
execution skips till just after ELSE to execute the

lfl«? J££V HrSE eilher Part' execution resumes
after ENDIF. ELSE and its false part are optional;
if missing, false execution skips to just after
ENDIF.

At compile-time, IF compiles OBRANCH and reserves
space for an offset at addr. addr and n are used
later for resolution of the offset and error
testing.

IMMEDIATE

Mark the most recently made definition so that when
encountered at compile time, it will be executed
rather than being compiled, i.e. the precedence bit
in its header is set. This method allows defini
tions to handle unusual compiling situations,
rather than build them into the fundamental
compiler. The user may force compilation of an
^mediate definition by Precee<3ing it with
ICOMPILE].

IN addr

A user variable containing the byte offset within
the current input text buffer from which the next
text will be accepted. WORD uses and updates the
value of IN.

INTERPRET

KEY

LATEST

The outer text interpreter which executes or
compiles text from the input stream depending on
STATE. If the word name cannot be found after a
search of CONTEXT and then CURRENT, it is converted
to a number according to the current base. That
also failing, an error message echoing the name
with a ■ ?■ will be given. Text input will be
taken according to the convention for WORD.

Leave the ascii value of the next terminal key
struck.

addr

Leave the name field address of the topmost v/ord in
the CURRENT vocabulary.

32

TINY FORTH

For the COMMODORE 64:

: UFO

15 54296 C!

16 54276 C!

34334 8583 DO

I 54272 !

80 DELAY

LOOP

0 54276 Cl

0 54296 C! ;

(volume)

(waveform triangular)

(vary frequency

of voice 1)

(wait a while)

(turn off volume)

(turn off waveform)

Now type in UFO <RETURN> to listen to the sound.

If you want to inspect the contents of memory (commonly
known as dumping), in hexadecimal, use a word like this:

: DUMP

SWAP 1+ SWAP

DO

I 4 .R

I

DO

I C§ 3 .R

LOOP

CR

5

+LOOP ;

(add 1 to ending memory addr)

(print the addr)

(print "©")

(prepare to print a line of

5 bytes of memory)

(print one byte)

(now loop 5 times)

(new line)

(add to address)

(next line has address 5 bytes

greater than last)

To dump a range of memory, say from $2000 thru $2080 you can
use the following:

HEX 2080 2000 DUMP <RETURN>

13

TINY FORTH

0 SETOUT

PRT CLOSE ;

(reset current output device

to screen)

(close printer logical file)

Using PLIST, you can get a hard copy of any TINY FORTH
screen(s). For example, if you have been editing screen

number 2, you can get a hardcopy of it by typing:

2 2 PLIST <RETURN>

If you want to try a little animation then first define a

word called DELAY.

: DELAY 0 DO 1 DROP LOOP y

Next define a word called BIRD.

BIRD

.• v"

BEGIN

500 DELAY

500 DELAY

ill!"

?TERMINAL

UNTIL

CR ;

(clear screen)

(draw bird)

(wait a while)

(draw bird again)

(wait some more)

(erase bird)

(check for RUN/STOP key)

(repeat if not RUN/STOP)

Now type BIRD <RETURN> and watch some animation.

Here's how to make some noise with your computer. Using the
word DELAY from the above example, you can define another
word called UFO.

For the VIC-20:

: UFO

15 36878 Cl

254 130 DO

I 36876 C!

80 DELAY

LOOP

0 36878 C!

0 36876 C! ;

(set volume to 15)

(vary the frequency from

130 to 254)

(frequency to VIC chip)

(wait a while)

(go back again)

(turn off volume)

(turn off VIC chip)

12

TINY FORTH

LEAVE

LFA

LIMIT

LIST

LIT

LITERAL

LOAD

LCC-BLK

Force termination of a DO-LOOP at the next opportu
nity by setting the loop limit equal to the current
value of the index. The index itself remains
unchanged, and execution proceeds normally until
LOOP or +LOOP is encountered.

1 pfa Ifa

Convert the parameter field address of a dictionary
definition to its link field address.

addr

A constant leaving the address just above the
highest memory available for a buffer.

nl n2

Display the ascii text of screens n2 thru nl on the
selected output device. SCR contains the screen
number during and after this process. Screens are
read from tape or disk if not in memory.

Within a colon-definitionf LIT is automatically
compiled before each 16 bit literal number

encountered in input text. Later execution of LIT

causes the contents of the next dictionary address
to be pushed to the stack,

n (compiling)

If compiling, then compile the stack value n as a
16 bit literal. This definition is immediate so
that it will execute during a colon definition. The
intended use is:

: xxx (calculate) LITERAL ;

Compilation is suspended for the compile time cal
culation of a value. Compilation is resumed and
LITERAL compiles this value.

n

Begin interpretation of screen n. Loading will
terminate at the end of the screen or at the ;S.
See ;S or —>.

n f

Locate block number n in memory only. PREV is
updated to point to block if found, else it is
unchanged, f is true if block is found, f is false
if the block is not currently in the buffer.

33

TINY FORTH

LCCP

max

MFSSAGE

MIN

MINUS

MOD

MCN

MOVE

NFA

NOP

NUMBER

addr n (compiling)

Occurs in a colon-definition in form:

DO ... LOOP

At runtime, LOOP selectively controls branching
back to the corresponding DO based on the loop

index and limit. The loop index is incremented by
one and compared to the limit. The branch back to

DO occurs until the index equals or exceeds the

limit; at that time, the parameters are discarded

and executioncontinues ahead.

At compile time, LOOP compiles (LOOP) and uses addr

to calculate an offset to DO. n is used for error

testing.

nl n2 max

Leave the greater of nl and n2.

Print on the selected output device the text "MSG

#" and the value of n according to the current

BASE.

nl n2 min

Leave the smaller of two numbers.

nl — n2

Leave the two's complement of a number.

nl n2 mod

Leave the remainder of nl/n2, with the same sign as

nl.

Execution of 6502 BRK instruction.

addrl addr2 n

Move the contents of n memory cells (16 bit

contents) beginning at addrl into n cells beginning

at addr2. The contents of addrl is moved first.

pfa — nfa

Convert the parameter field address of a definition

to its name field.

A word which does nothing.

addr n

Convert a character string left at addr with a

preceeding count to a signed number nf using the

current BASE. If numeric conversion is not

possible, an error message is given.

34

TINY FORTH

USEFUL EXAMPLES

To repeat, the easiest way to learn TINY FORTH is the try

examples. Included below are several examples that explain

some of the more useful words that will help you get the

most from your TINY FORTH. Note that comments begin with (

and end with).

To change a tape version of TINY FORTH to a disk version,

define a word called DISK as follows:

COMMODORE 64 : DISK BASE C§ HEX 8 1E38 C! BASE C! ;

VIC-20 : DISK BASE C@ HEX 8 2838 C! BASE C! ;

Here's the play by play description™

DISK

BASE C@

HEX

8 1E38 C!

or

8 2838 C!

BASE Cl

beginning of definition)

name of v/ord)

leave current base on the stack)

change base to hexadecimal)

change device or LOADing, PUTting,

GETting, etc. to device 8)

restore base to original)

To change a disk version of TINY FORTH to a tape version,

define a word called TAPE as follows:

COMMODORE 64 : TAPE BASE C@ HEX 1 1E38 C! BASE C! ;

VIC-20 : TAPE BASE C£ HEX 1 2838 C! BASE C! ;

This word is similar to the word DISK above except that the

device is 1 (tape device).

If you have a printer and want to get a hard copy of a

screen you can define a word to do this.

: PLIST

PRT 0 0 OPEN

PRT SETOUT

LIST

(printer version of list)

(PRT variable for printer

with device 4

0 no name

0 length of name

OPEN opens logical file)

(set current output device

tp variable PRT)

(perform normal LIST, but

to device 4)

11

TINY FORTH

:L addr n

Lists n screen lines from the buffer at addr. If
the output device is other than the screen, a

carriage return is output at the end of each screen
line.

:M faddr taddr

Move a buffer from faddr to taddr. The length of
the move is defined by B/BUF.

:C bfaddr n addr

Compute the offset of line n relative to bfaddr.

NOTES ON USING THE EDITOR

Unlike the BASIC editor, TINY FORTH works with a full screen

at a time. When you are using :E or :I and enter a SHIFTed
<RETURN> key, the entire screen contents are saved exactly

as you see them. It is not necessary to <RETURN> over each
line to update the buffer.

Using a tape version of TINY FORTH, it is possible to

•update1 a tape if you are careful, since the screens are

always the same length. The technique is to make sure the

screen you want to update is in a buffer and update it (use
the n :E. command). Then use the following: SCR @ 1 - GET.

You have to rewind the tape and then TINY FORTH reads in the

screen just before the one you want to update. Pake sure the
tape is STCPped and enter SCR @ PUT. Make.sure you press
PLAY and RECORD when asked. Make sure that you reference the
screen you want to save before the GET (v"ia a »n :Ef or 'n

BLOCK DROP1) or GET may overlay the buffer you want to save.

THE SCREEN BUFFERS

As delivered the VIC-20 version of TINY FORTH has two
buffers, while the COMMCDORF 64 version has six buffers.

Each buffer has a length equal to the length of a screen
plus 2 bytes. These two bytes are used to hold the TINY

FORTH screen number currently in that buffer. The number of
buffers can be increased, but they must be contiguous, and

each must be B/BUF + 2 bytes in length. NOTE that BLOCK-READ
and BLOCK-WRITE do not use these buffers for their I/O.

BLOCK-READ and BLOCK-WRITE are basically interfaces to the
kernal read and write routines, and can be used to
read/write any memory.

10

TINY FORTH

CFFSFT

OR

CUT

OVER

PAD

PFA

PREV

QUERY

QUIT

addr

A user variable which may contain a block offset to
the disk buffer. The contents of OFFSET is added to
the stack number by BLOCK.

nl n2 -— or

Leave the bitwise logical or of two 16-bit values.

addr

A user variable that contains a value incremented
by EMIT. The user may alter and examine OUT to
control display formatting.

nl n2 nl n2 nl

Copy the second stack value, placing it as the new
TOS.

addr

Leave the address of the text output buffer, which
is a fixed offset above HERE.

nfa pfa

Convert the name field address of a compiled
definition to its parameter field address.

addr

A user variable containing the address of the
buffer most recently referenced. Updated by BUFFER.

Input 88 characters or text (or until a <RETURN>
from the terminal. Text is positioned at the
address contained in TIB with IN set to zero.

Clear the return stack, stop compilation, and
return control to the operators terminal. No
message is given.

P#

Copy the top of the return stack to the computation
stack.

addr

A user variable which may contain the location of
an editing cursor, or other file related function.

addr blk f

The TINY FORTH standard tape or disk read-write
linkage, addr specified the source or destination
block buffer, blk is the sequential number of the
referenced block; and f is a flat for f=0 write and
f=l read. R/w determines the location on mass
storage, performs the read-write and performs any
error checking.

35

TINY FORTH

R>

RO

RFPEAT

ROT

RP!

SO

SCR

SIGN

S PUDGE

SP!

SP@

Remove the top value from the return stack and

leave it on the computation stack. See >R and R.

addr

A user variable containing the initial location of

the return stack. Pronounced R-zero. See RP!

addr n (compiling)

Used within a colon-definition in the form:

BEGIN . .. WHILE ... REPEAT

At runtime, REPEAT forces an unconditional branch

back to just after the corresponding BEGIN.

At compile time, REPEAT compiles BRANCH and the

offset from HERE to addr. n is used for error

testing.

nl n2 n3 n2 n3 nl

Rotate the top three values on the stack, bringing

the third to the TOS.

Initialize the return stack pointer from user

variable RO.

addr

A user variable containing the initial value for

the stack pointer. Pronounced S-zero. See SP!

addr

A user variable containing the screen number most

recently referenced by LIST.

nl n2 n2

Stores an ascii "-" sign just before a converted

numeric output string in the text output buffer

when n is negative, n is discarded, but number n2

is maintained. Must be used between <# and #>.

Used during word definition to toggle the "smudge

bit" in a definitions1 name field. This prevents an

uncompleted definition from being found during

dictionary searches, until compiling is completed

without error.

Initialize the stack pointer from SO.

addr

A procedure to return the address of the stack

position to the top of the stack, as it was before

SP@ v/as executed.

36

TINY FORTH

cancel these changes by pressing RUN/STOP.

After editing you will want to save the contents of the

screen to disk or tape. To do this type:

1 PUT <RETURN>

The contents of the buffer (in this case buffer # 1) is

saved to the disk or tape with the name "SCREENl".

After you become familiar with TINY FORTH, you will create

many new words. Each time you use TINY FORTH, you must

define these new words in the dictionary by typing them in

(using colon definitions). An alternate way of doing this

is to use the editor to create the source text for these

words, and then save them to disk or tape (using PUT).

Later, these screens are LOADed from the disk or tape

thereby eliminating the need to retype them in. For example,

to automatically compile any words on "SCREENl", you can
type:

1 LOAD <RETURN>

TINY FORTH searches the buffers to find "SCREENl". If

"SCREENl" is not in memory, TINY FORTH searches the tape or

disk for "SCREENl11 and when it finds it, reads the contents

and executes the commands contained.

Below are the other editing words available in TINY FOPTH.

Try them out, since trying is the best way to learn to use

TINY FORTH.

: E n --—

Full screen edit of screen # n. This word uses

BLOCK to locate the requested screen, so it is read

from tape or disk if necessary. Normal cursor

editing is used. The TINY FORTH screen data is

copied to the screen for editing. Note that the

screen editor allows lines to wrap, but TINY FORTH

treats the whole screen as one "line", and does not

retain information concerning how lines are

wrapped. Pressing the RUN/STOP key terminates

editing without making any changes to the buffer.

Pressing a shifted RETURN (hold SHIFT key while

pressing <RETURN> key) exits the editor and saves

the entire screen contents in the buffer.

n

Input from tape or disk to buffer as screen # n.

Screen n must not already be in memory or error 5

results. Editing is the same as for :E. Note that

the screen is not cleared at the start of :I, so

any information on the screen is copied to the

buffer unless you clear it.

TINY FORTH

THE EDITOR

The TINY FORTH editor works with a full screen at a time. To
start out, type:

EMPTY-BUFFERS <RETURN>

which clears out the areas of memory (called BUFFERS) used
by the editor. Now to edit a screen, type:

1 :I <RETURN> (no space between the : and I) .

This tells TINY FORTH that you want to input data onto

SCREEN number 1 (or another screen number). The cursor is

positioned at the upper left hand corner of the screen and
waits for you to input your data. You should first hold the
shift key and press the CLR key in order to erase the screen
of any data left on the screen.

With the editor, you can move the cursor anywhere on the

screen using the cursor control keys. After the cursor is
positioned where you want it, you can key in your data. The

insert and delete keys work normally. Unlike the BASIC
editor, the TINY FORTH editor works with a full screen at a
time. What you see (on the screen) is what you get (in the
BUFFER). It is not necessary to <RETURN> over each line to
make changes.

After £11 of your changes are made to the screen, you may

update the BUFFER or cancel the changes.

To update the BUFFER enter a SHIFTed <RETUPN> (hold the

SHIFT key while pressing the RETURN key). The contents of

the screen are saved in the associated BUFFFR, exactly as it
appears on the screen.

To leave the editor without updating the BUFFER, press the
RUN/STOP key instead. The contents of the BUFFFR is left
unchanged.

Commands and definitions keyed onto a screen using the

editor are not immediately executed. If after editing a

screen you want to execute the contents, type 1 LOAD and

TINY FORTH will execute the commands contained in screen

buffer # 1 (of whatever screen number you were editing). Any
colon definition contained in the screen buffer are compiled
and if no errors are found they are entered into the
dictionary. If errors are found, you can go back to re-edit
the screen buffer.

To re-edit the screen, type 1 :E <RETURN>. You may use the
cursor control keys to position the cursor for making

changes to the screen contents. Again, to save the contents
of the screen to the BUFFER, press a SHIFTed <RETURN>, or

TINY FORTH

SPACE

SPACES

STATF

SWAP

TASK

THFN

TIB

Transmit an ascii blank to the output device.

n —

Transmit n ascii blanks to the output device.

addr

A user variable containing the compilation state. A
non-zero value indicates compilation.

nl n2 n2 nl

Exchange the top two values on the stack.

A no-operation word which can mark the boundary
between applications. By forgetting TASK and re
compiling, an application can be discarded in its
entirety.

An alias for ENDIF.

addr

A user variable containing the address of the
terminal input buffer.

TOGGLE addr b

Complement the contents of addr by the bit pattern
b.

TRAVERSE addrl n addr2

Move across the name field of a variable length
name field, addrl is the address of either the

length byte or the last letter. If n=l, the motion
is toward hi memory; if n=-l, the motion is toward
low memory. The addr2 resulting is the address of
the other end of the name.

TYPE addr count

Transmit count characters from addr to the selected
output device.

U* ul u2 ud

Leave the unsigned double number product of two
unsigned numbers.

U/ ud ul u2 u3

Leave the unsigned remainder u2 and unsigned quo
tient u3 from the unsigned double dividend and
unsigned divisor dl.

37

UNTIL

USE

UPDATE

USER

f (runtime)
addr f (compile)

Occurs within a colon-definition in the form:
BEGIN ... UNTIL

At runtime, UNTIL controls the conditional branch
back to the corresponding BEGIN. If f is false,

execution returns to just after BEGIN; If true,
execution continues ahead.

At compile-time, UNTIL compiles (OBRANCH) and an
offset from HERE to addr. n is used for error
tests.

addr

A user variable containing the address of the

buffer to use next as the least recently used.
Updated by BUFFER.

Write the most recently referenced block (pointed
to by PREV) to tape or disk.

A defining word used in the form:
n USER cccc

which creates a user variable cccc. The parameter
field of cccc contains n as a fixed offset relative

to the user pointer register UP for this user
variable. When cccc is later executed, it places

the sum of its offset and the user area base
address on the stack as the storage address of that
particular variable.

VARIABLE

A defining wword used in the form:
n VARIABLE cccc

When VARIABLE is executed, it creates the

definition cccc with its parameter field

initialized to n. When cccc is later executed, the
address of its parameter field (containing n) is
left on the stack, so that a fetch or store may
access this location.

VCC-LINK addr

A user variable containing the address of a field
in the definition of the most recently created
vocabulary. All vocabulary names are linked by

these fields to allow control for FOPGETting thru
multiple vocabularies.

38

TINY FORTH

print the value at the TOS

; end of definition (compile)

The name of the new word is arbitrary. You can call it

SQUARE, SQRF or SQUARED. You can even use the name of a
previously defined word. In this case, you will see a

warning message MSG # 4 meaning that the new word is not
unique. The most recent definition of the word is always
executed. So if you redefine SQR at a later time, this last

definition is executed when you type in SQR.

To try out the new word, type:

6 SQR <RETURN>

TINY FORTH responds by printing:

36

OK

The glossary description for the new word is:

SQR nl

The value nl is the number that you want to square. SQR

expects this number to be at the TOS before it is executed.

No value is left on the stack after SQR is executed, so no
values are shown the the right of the (execution point).

This concludes the "basics" section of TINY FORTH. For more
information on other TINY FORTH words, consult the GLOSSARY
or one of the references listed in the BIBLIOGRAPHY.

The next section describes the full screen editor. The

EDITOR allows you to create SCREENS which can be saved to
disk or tape. A screen may contain new definitions or just
plain text. The screen may later be LOADed (compiled from
disk or tape) or LISTed (displayed on screen).

TINY FORTH

A THIRD EXAMPLE

In the first example, the v/ord . printed to the TCS value.

However in doing so, it also removed it from the stack.

If we want to print the TOS without destroyint it, then we

must first make a copy of the TOS. You can do this with the

TINY FORTH v/ord DOP.

For example the words:

5 DOP <RETURN>

would give a stack like this:

TOS—

BOS—

Printing using the . word, removes only the first value 5,

leaving the second 5 at the TCS.

As previously mentioned, TINY FORTH comes with a dictionary

filled with useful words. They are described in the glossary

section of this manual. But you may also add your own words

to TINY FORTH. To add words to TINY FORTH, you have to

COMPILE them.

You tell TINY FORTH that you are creating a new word by

using a s (colon). The s means that the name following the

colon is the name of a new word. Any words following the

name is part of the definition of that new word. Finally a ;

(semicolon) tells TINY FORTH that the defintion is complete.

Using elements from the previous examples, you can create a

new word called SQR (which prints the square of the number

at the TOS). The new word and definition is compiled by

typing:

s SQR DOP *

CK

<RETURN>

Notice that after typing the above line that TINY FORTH

responds by printing CK. When TINY FOPTH is compiling (colon

definition), the new word is not executed. The colon means

that you are creating a new v/ord, not executing it.

A closer look at the line:

SQR

DOP
*

beginning of definition (compile)

name of the new word (you could call it

anything you wanted)

duplicate the value at the TOS

multiply the two values at the TOS leaving

the product in their place

TINY FORTH

VOCABULARY

A defining word used in the form:

VOCABULARY cccc

to create a vocabulary definition cccc. Subsdequent

use of cccc will make it the CONTEXT vocabulary

which is searched first by INTERPRET. The sequence

"cccc DEFINITIONS" will also make cccc the CURRENT

vocabulary into v/hich new definitions are placed.

In TINY FORTH, cccc will be so chained as to

include all definitions of the vocabulary in which

cccc is itself defined. All vocabularies ultimately

chain to FORTH. By convention vocabulary names are

to be declared IMMEDIATE. See VOC-LINK.

VLIST

WARNING

WHILE

WIDTH

List the names of the definitions in the context

vocabulary. The RUN/STOP key will terminate the

listing.

addr

A user variable containing a value controlling

messages.

f (runtime)

addrl nl —- addrl nl addr2 n2

Occurs in a colon-definition in the form:

BEGIN ... WHILE (tp) ... REPEAT

At runtime, WHILE selects conditional execution

based on boolean flag f. If f is true (non-zero),

WHILE continues execution of the true part thru to

REPEAT, which then branches back to BEGIN. If f is

false (zero), execution skips to just after REPEAT,

exiting the structure.

At compile time, WHILE emplaces (OBRANCH) and

leaves addr2 of the reserved offset. The stack

values will be resolved by repeat.

addr

A user variable containing the maximum number of

letters saved in the compilation of a definition's

name. It must be 1 thru 31, with a default value of

31. The name, character count and its natural

characters are saved, up the the value in WIDTH.

The value may be changed at any time v/ithin the

above limits.

39

TINY FORTH

WORD c

Red the next text characters from the input stream
being interpreted, until a delimiter c is found,
storing the packed character string beginning at
the dictionary buffer HERE. WORD leaves the
character count in the first byte, the characters,

and the ends with two or more blanks. Leading
occurrances of c are ignored. If BLK is zero, text

is taken from the terminal input buffer, otherwise
from the tape or disk block stored in BLK. See BLK,
IN.

XOP

This is a pseudonym for the "null" of dictionary
entry for a name of one character of ascii null. It

is the exectuion procedure to terminate
interpretation of a line of text from the terminal
or within a tape or disk buffer, as both buffers
always have a null at the end.

nl n2 xor

Leave the bitwise logical exclusive-or of two
values.

Used in a colon-definition in form:
: xxx [words] more ;

Suspend compilation. The words after [are
executed, not compiled. This allows calculation or

compilation exceptions before resuming compilation
with]. See LITERAL.

[COMPILE]

Used in a colon-definition in form:
: xxx [COMPILE] FORTH ;

[COMPILE] will force the compilationof an immediate
definition, that would otherwise execute during
compilation. The above example will select the

FORTH vacabulary when xxx executes, rather than at
compile time.

Resume compilation, to the completion of a colon-
definition. See [.

40

TINY FORTH

the stack in succession. As each value at the TOS is
printed, it is removed from the stack, leaving a new TOS
value.

Now type • once more and <RETURN> and TINY FORTH prints:

0 MSG # 1

This means that the stack is empty since there are no
further values on the stack. TINY FORTH keeps track of

the bottom of the stack amd tells you if you are "bottoming
out .

A SECOND EXAMPLE

The first example placed values on the stack and then
removed them from the stack. The next example works a
little differently.

Type:

25 3 <RETURN>. Don't forget to leave a space between the
25 and 3. The stack now looks like this:

TOS

BCS

3

25

Now type the word * <RETURN>. The word * tells TINY FORTH to

multiply the value at the TOS by the value just underneath
the TOS, remove both values and finally place the product at
the TCS. After executing the word *, TINY FORTH places the
value 75 at the TOS. To verify this, type . <RETURN> to
print the TOS value.

In TINY FORTH, we describe the action of a word by showing

the parameters on the stack before the execution of the word
and the resulting values on the stack after the execution of
a word.

For the multiply word * here is its description:

* nl n2 prod

The values nl and n2 are the multiplier and multiplicand.
The indicates the execution point of the word *.

Finally, prod is the resulting product which replaces both
nl and n2 on the stack.

The GLOSSARY in this manual is written using this
description format.

TINY FORTH

To introduce you to the language, here some examples:

A FIRST EXAMPLE

TINY FORTH considers numbers to be words. Whenever TINY
FORTH encounters a number, it places that value on the

stack. Remember that individual numbers are separated by
spaces.

Let's begin by typing in the following words:

2 4 6 8 10 <RETURN>

Remember to leave a space between each number. After you

press <RETURN>, TINY FORTH responds by printing OK meaning

that it has placed the four number on the stack in the same
order as you typed them in. First the number 2 is pushed
onto the stack, making it the top of the stack (TOS). Next

the number 4 is placed on the stack, pushing 2 down and
leaving 4 at the TOS, etc. Finally after all of the words

(numbers in this case) are executed, the stack looks like
this:

TCS (top of stack) >

bottom of stack-

10

8

6

4

2

Now type the word . (a period, but commonly pronounced

"dot") and press the RETURN key. TINY FORTH prints:

10

OK

The word . means print the value at the top of the stack and

remove it from the stack. The stack therefore looks like
this:

TOS (top of stack) >

Bottom of stack-

The value that was previously at the TOS (8) is gone. Now
type the following:

. . . • <RETORN>

TINY'FORTH will print:

8 6 4 2

OK

You told TINY FORTH to print the three values at the top of

TINY FORTH

MEMORY MAP

(all addresses are hexadecimal)

COMMODORE 64

004F-0051 *

0057-005E

0OFB-00FC

0800

080D

VIC-20

004F-0051

0057-005E

00FB-00FC

1200

120D

DESCRIPTION

080E-08AB

08AD

08AF

08B3

120E-12AB

12AD

12AF

12B3

08B5

08B7

0B2A

0B3B

12B5

12B7

152A

153B

0B57

0B7A

0F19

0F22

0F2E

1557

157A

1919

1299

192E

CODE FIELD POINTER

FORTH WORK AREA

NEXT FORTH WORD POINTER

BASIC STATEMENT WHICH IS THE SYS

TO THE START OF TINY FORTH

FORTH STACK INDEX SAVEAREA. FOR

MACHINE, THIS WILL POINT TO THE

TOP OF THE FORTH STACK RELATIVE
TO $080E

FORTH DATA STACK

INITIAL ADDRESS CF THE NAME FIELD
OF THE LAST FORTH WORD ($20ED

FOR C-64;$2AED FOR VIC-20)

POINTER TO TFRNINAL INPUT BUFFER

($0200)

INITIAL FORGET FENCE (CAN'T FORGET

WORDS BELCW THIS ($210B FOR C-64;
$2B0B FOR VIC-20)

INITIAL ADDRESS OF START OF

AVAILABLE MEMORY ($210B FOR C-64;
$2B0B FOR VIC-20)

INITIAL VOCABULARY LINK POINTER

(S178CFOR C-64;$2A8C FOR VIC-20)
JSR CHROOT AS PART OF EMIT

JSR GETIN AS PART OF KEY. NOTE

THAT KEY USES THF GET ROUTINES,

BUT WAITS FOR A CHARACTER TO BE

ENTERED FROM THF KEYBOARD. THE

CURSOR IS NOT ON AT THIS TIME,

NOR IS THE CHARACTER FCHOED TO

THF SCREEN. USE HEX EAEA 0B3F !,

FOR C-64 OR HEX EAEA 15EF ! FOR

THE VIC-20 TO CAUSE KEY TO LEAVE

A ZERO ON THE STACK IF NO KEY IS

DOWN. USE HEX FAFO 0B3F ! FOR THF
C-64 OR HEX FAFO 15EF ! TO

RESTORE THE DEFAULT CONDITION.

JSR STOP AS PART OF 7TERMINAL

JSR CHROOT AS PART OF CR

LM: TCP OF AVAILABLE DICTIONARY

MEMORY ($8844 FOR C-64; $3BC8

FOR VIC-20)

UA: ADDRESS CF64-BYTEUSER
VARIABLE APEA ($9FC0 FOP C-64;
$3FC0 FOR VIC-20)

LIMIT: LIMIT OF MEMORY FOR

BUFFERS ($9FC0 FOR C-64; $3FC0
FOR VIC-20)

41

TINY FORTH

0F3A 193A

0F45

0F50

0F5C

1945

1950

195C

FIRST: ADDRESS OF START OF

BUFFFR MEMORY ($8844 FOR C-64;

$3BC8 FOR VIC-20)

ROWS: NUMBER OF ROWS ON A

SCREEN ($0019 FOR C-64; $0017
FOR VIC-20)

COLS: NUMBER OF COLUMNS ON A

SCREEN LINE ($0028 FOR C-64;

$0016 FOR VIC-20)

B/BUF: BUFFER DATA LENGTH

($03E8 FOR C-64; $0lFA FOP

VIC-20)

DEVICE NUMBER FOR SCREENSAVES
AND LOADS ($01)

START CF AVAILABLE DICTIONARY
MEMORY

BUFFER AREA

START CF 64 BYTE USER VARIABLE

AREA (FIPST 44 BYTES ARE USED

BY TINY FORTH)

The location and length of the USER AREA, screen buffers,
and terminal buffer can be changed by changing the
appropriate pointers as noted above. To allocate an extra
buffer, use the following:

FIRST B/BUF 2+ - • FIRST I FIRST ■ LM ! EMPTY-BUFFERS

Note that the change will be temporary unless you save a new

copy of TINY FORTH. Be sureto enter the single quotes
(called TIC) where shown.

1E38

210B

8844-9FBF

9FC0

2838

2B0B

3BC8-3FBF

3FC0

42

TINY FORTH

SOME TINY FORTH BASICS

WORDS and the DICTIONARY

We talk to TINY FORTH using WORDS. All of TINY FORTH's

words are stored in the DICTIONARY. TINY FORTH comes with a

vocabulary of more than 175 words. You can also add new

words to the dictionary, thereby extending your TINY FORTH

language. We'll show you how to do this later.

A word consists of a character or several characters.

However do not use any of the COMMODORE 64 or VIC-20 graphic

characters for the name of a word. Some TINY FORTH words

consist of special characters such as +, -, * or / which are

similar to arithmetic operators of the BASIC language. A

word is "executed" when the RETURN key (<RFTURN>) is
pressed.

STACK

The STACK is a place where TINY FORTH temporarily stores

information. A TINY FORTH word usually expects the STACK to

contain a certain number of values when they are executed.
The word may also leave a value on the STACK as a result of

its execution.

Values are placed on the STACK one at a time. The value that

most recently placed on the STACK is called the top of the

stack (TOS). If no values are left on the STACK, then it is
said to be empty.

NUMBERS

TINY FORTH has many words that work with numbers. The

numbers must be integers (whole numbers). They range in

value from -32768 to +32767.

SPACES and the RETURN KEY

Unlike BASIC, the SPACE is a significant part of the TINY
FORTH language. Unless a word is "separated by a SPACF, TINY
FORTH is not able to find the word in the dictionary.

The RETURN key (<RETURN>) tells TINY FORTH that you are

ready to execute the word(s) that you have typed in. This
lets you group together several words on a line (or even on

multiple lines) and then execute them by pressing <RETURN>.

The words are then executed in the order in which they were
entered•

TINY FORTH

GETTING TINY FORTH SETUP

The distribution tape or diskette contains one the
following:

CONTENTS

TINY FORTH for the VIC-20

TINY FORTH for the COMMODORE 64

Follow these directions to run TINY FORTH.

1.

2a

If using a VIC-20 version, make sure that you
have an 8K memory expander installed. If not,
turn off the computer, plug in the memory
expander and then turn on the computer.

If using a tape version of TINY FORTH, insert the
distribution tape into the cassette drive. Pake
sure that the tape is completely rewound.

or

b. If using a disk version of TINY FORTH, carefully
insert the distribution diskette into the disk
drive and close the drive door.

3a. If using a tape version type:

LOAD "TF-20-,1,1 or LOAD "TF-64-,1,1 and press
the RETURN key. Be sure to type ,1,1.

Press PLAY on the cassette recorder when asked to
do so by the computer. With a COMMODORE 64, when

the message FOUND -TF-64- appears on the screen,
press the C= key to continue loading.

or

b. If using a disk version type:

LOAD "TF-20-,8,1 or LOAD "TF-64-,8,1 and press
the RFTURN key. Be sure to type ,8,1.

4. After TINY FORTH is loaded, the READY, prompt
reappears on the screen. At this time, type PON

and press the RETURN key. A TINY FORTH signon
message appears on the screen and a flashing

cursor indicates that TINY FORTH is ready to
accept your commands.

5. Now turn the the section called SOME TINY FORTH
BASICS.

6. If you have to warm start TINY FORTH, you can
type SYS6225 for a Commodore 64 or SYS8785 for a
VIC-20.

TINY FORTH

SAVING A NEW VERSION OF TINY FORTH

You will probably extend your TINY FORTH vocabulary as you

become more and more familiar with the language. Eventually
you will want to create a new version of TINY FORTH which
includes your personally customized words. To save a copy of
Tiro FORTH with new words and changes use the word NEWFORTH.
NEWFORTH saves a new version of TINY FORTH to tape or disk

with the name NEW.TF-20 or NEW.TF-64. The following are the
definitions for NEWFORTH.

For the COMMODORE 64

20 $STRING NTF-64

20 $ STRING TFDUMMY

NTF-64 $" NEW.TF-64"

(THESE DEFINITIONS HAVE)

(ALREADY BEEN SET UP)

(IN TINY FORTH)

(SAVE ORIGINAL FILENAME)

(NAME OF NEW FILENAME)

NEWFORTH

TFDUMMY SNP $!

SNP NTF-64 $!

HEX LATEST 08AD !

HERE 08B5 !

VOC-LINK 8 08B7 !

HERE 0800 SNP COUNT BLOCK-WRITE « WRITE NEW FILE)
SNP TFDUMMY $! ; f RESTORE ORIGNAL FILENAME)

For the VIC-20:

20 $STRING NTF-20

20 $STPING TFDUMMY

NTF-20 $w NEW.TF-20"

(THESE DEFINITION HAVE)

(ALREADY BEEN SET UP)

(IN TINY FORTH)

(SAVE ORIGINAL FILENAME)

(NAME OF NEW FILENAME)

NEWFORTH

TFDUMMY SNP $!

SNP NTF-20 $!

HEX LATEST 12AD !

HERE 12B5 !

VOC-LINK § 12B7 !

HERE 1200 SNP COUNT BLOCK-WRITE i WRITE NEW FILE)
SNP TFDUMMY $! ; (RESTORE ORIGNAL FILENAME)

43

TINY FORTH

ERROR MESSAGES

ERROR NUMBER KEANING

0

1

2

4

5

9

17

18

19

20

21

22

24

WORD NOT FOUND

EMPTY STACK OR STACK OVERFLOW

DICTIONARY FULL

WARNING-NEW WORD IS NOT UNIQUE

REFERENCED SCREEN IS ALREADY IN

MEMORY AND SHOULD NOT BE

ILLEGAL CHARACTER IN NAME

COMPILATION ONLY, USER IN

DEFINITION

EXECUTION ONLY

CONDITIONALS NCT PARIFD

DEFINITION NOT FINISHED

IN PROTECTED DICTIONARY

USE ONLY WHFN LOADING

DECLARE VOCABULARY

I/O ERROR MEANING

0

1

2

3

4

5

6

7

8

9

I/O ROUTINF TERMINATED BY RUN/STOP
TOO MANY OPFN FILES

FILE ALREADY OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

FILE IS NOT INPUT FILE

FILE IS NOT OUTPUT FILE

FILE NAME IS MISSING

ILLEGAL DEVICE NUMBER

44

TINY FORTH

INTRODUCTION

FORTH is a high-level programming language. A program

written in FORTH does not look at all like its equivalent
written in BASIC. Nonetheless, FORTH is as equally capable
as BASIC in problem solving.

In some respects FORTH is superior to BASIC. For instance,

FOPTH programs typically execute faster than BASIC programs.

FORTH programs are usually shorter than BASIC programs.

FORTH is "extensible" - you can add new words to the

language. On the other hand, most people initially find that
FOPTH programs are cryptic compared to BASIC.

TINY FOPTH is a version of FORTH for the COMMODORF 64 and

VIC-20 microcomputers. It contains most of the language

elements found in the fig-FOPTH standard (most widely used
version). TINY FORTH runs on a standard COMMODORE 64 or a

VIC-20 with a minimum of an 8K memory expander.

This manual will show you how to get TINY FORTH up and

running on your micro. It introduces you to the language

elements that are included in TINY FORTH. However, it is not

a tutorial on FORTH programming. For that, we recommend one

of the references listed in the BIBLIOGRAPHY. Still we'll

show you enough examples so that you are able to see how
TINY FORTH works.

Cur advice to you is to sit down with TINY FORTH and

experiment with the words in the GLOSSARY. Mot only will you

find TINY FORTH a powerful language, but it is a fun one
too. So have fun!

BIBLIOGRAPHY

TABLE OP CONTENTS

INTRODUCTION 1

GETTING TINY FORTH SETUP. 2

SOME TINY FORTH "BASICS" 3

THE EDITOR 8

USEFUL FXAMPLES 11

DUPLICATE WORD DEFINITIONS 14

FILENAMES 15

GLOSSARY

NEW WORDS 16

STANDARD WORDS 19

SYSTEM INFORMATION

MEMORY MAP 41

SAVING A NEW VERSION OF TINY FORTH..43

ERROR MESSAGES 44

BIBLIOGRAPHY 45

Here are some references in which you will find more about

the FORTH language:

Ragsdale, William F., fig-FORTH INSTALLATION MANUAL, FORTH

INTEREST GROUP, San Carlos, CA, 1980.

Brodie, Leo, STARTING FORTH, Prentice-Hall, Englewood

Cliffs, 1981.

Knecht, Ken, INTRODUCTION TO FORTH, Howard W Sams & Co.,

Indianapolis, 1982.

Various, BYTE MAGAZINE, BYTE-MCGRAW HILL, August 1980 issue.

The contents of the GLOSSARY is taken in part from the

publications provided by the Forth Interest Group.

45

TINY FORTH

fig-Forth implementation for the

Commodore 64 and VIC-20

(C) 1983 NICK VRTIS

Suite 210, 5950 Cdte des Neiges, Montreal, Quebec H3S1Z6

HQTE j
I;

This software is protected against '.

copying. It is not possible to write to I
the program disk. In order to save the ?

programs which you create with this 1
software, you must use a new or previously

initialized diskette. Below is a simple

method of initializing a new disk. ?

OPEN15,8,15 ,* N0:DISKNAME,00 *

It will take about 90 seconds, after]
which you may save your program to the
new disk.

If the disk becomes unreadable within

30 days, we will replace it free of charge.
After 30 days, we will replace it for a fee
of $4.00..

HMMNTY

KING MCRNME lakes no warranties, expressed or ioplied, at to
the fitness of this software package for a particular purpose.In
no event will KING NICRDHME be liable for consequential

teases. KING MICROHRRE Mill replace any copy of this software
rfuch, is unreadable if returned within 39 days of purchase.

Thereafter a noainal fee will be charged for replacennt.

*

*
*
*

*

*

*

*
*
*
*
*

*
*

*
*
*
*
*

*

*

-w- -*-

TINY FORTH

PROGRAMMING LANGUAGE

FORTH is an exciting high-level programrning language. The FORTH

language Is very different looking from BASIC. But In many ways

it Is more powerful than BASIC.

FORTH has a base vocabulary of mlmple words. A word is executed

to perform a fundamental comput ing task. For ex amp 1e to add two

numbers and display the Bum using FORTH we would write:

104 73 ♦

These 'words' would add the numbers 106 and 73 together and

display the result on the screen. To conver t the decimal number

123 to hexadeci mal and display the results we would write:

123 HEX .

whlch Mould dlsplay the result 7A on thr screen.

ful ds byUsing FORTH we can create new and more pi

combining base words from the languags such as

: DASH 43 EMIT I

The HDrd DASH will display a *-' onto the display. This new. ward

In turn can be comb 1ned wlth others to create more complex words.

By defining the word DASHES «a follows -

: DASHES 0 DO DASH LOOP I

we can cause any number of '—' to appear on the display by typing

x DASHES where h is the number of dashes desired. Thus a single

new word can do the word of dozens of fundamental words. We call

FORTH an "extensible" language.

Write for our FREE CATALOG

MICROWARE

Suite 210,

5950 Cote des Neiges

Montreal, Quebec H3S 1 Z6

*
*

*
*
*
*

*
*

*

*
*

*

*

*

For the Commodore-64®or VIC-20'

